DOI QR코드

DOI QR Code

Shannon Entropy as an Indicator of the Spatial Resolutions of the Morphologies of the Mode Patterns in an Optical Resonator

  • Park, Kyu-Won (Department of Physics and Astronomy & Institute of Applied Physics, Seoul National University) ;
  • Kim, Jinuk (Department of Physics and Astronomy & Institute of Applied Physics, Seoul National University) ;
  • Moon, Songky (Faculty of Liberal Education, Seoul National University)
  • Received : 2020.08.26
  • Accepted : 2020.11.28
  • Published : 2021.02.25

Abstract

We present the Shannon entropy as an indicator of the spatial resolutions of the morphologies of the resonance mode patterns in an optical resonator. We obtain each optimized number of mesh points, one of minimum size and the other of maximum one. The optimized mesh-point number of minimum size is determined by the identifiable quantum number through a chi-squared test, whereas the saturation of the difference between Shannon entropies corresponds to the other mesh-point number of maximum size. We also show that the optimized minimum mesh-point increases as the (real) wave number increases and approximates the proportionality constant between them.

Keywords

References

  1. J. U. Nockel, and A. D. Stone, "Ray and wave chaos in asymmetric resonant optical cavities," Nature 385, 45-47 (1997). https://doi.org/10.1038/385045a0
  2. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, "High-power directional emission from microlasers with chaotic resonators," Science 280, 1556-1564 (1998). https://doi.org/10.1126/science.280.5369.1556
  3. S.-B. Lee, J. Yang, S. Moon, J.-H. Lee, K. An, J.-B. Shim, H.-W. Lee, and S. W. Kim, "Universal output directionality of single modes in a deformed microcavity," Phys. Rev. A 75, 011802 (2007). https://doi.org/10.1103/physreva.75.011802
  4. Q. H. Song, L. Ge, A. D. Stone, H. Cao, J. Wiersig, J.-B. Shim, J. Unterhinninghofen, W. Fang, and G. S. Solomon, "Directional laser emission from a wavelength-scale chaotic microcavity," Phys. Rev. Lett. 105, 103902 (2010). https://doi.org/10.1103/PhysRevLett.105.103902
  5. X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, "Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities," Adv. Mater. 24, OP260-OP264 (2012).
  6. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, "Ultralowthreshold Raman laser using a spherical dielectric microcavity," Nature 415, 621-623 (2002). https://doi.org/10.1038/415621a
  7. S. Anders, W. Schrenk, E. Gornik, and G. Strasser, "Room-temperature operation of electrically pumped quantum-cascade microcylinder lasers," Appl. Phys. Lett. 80, 4094-4096 (2002). https://doi.org/10.1063/1.1484246
  8. I. Teraoka, and S. Arnold, "Enhancing the sensitivity of a whispering-gallery mode microsphere sensor by a high-refractive-index surface layer," J. Opt. Soc. Am. B 23, 1434-1441 (2006). https://doi.org/10.1364/JOSAB.23.001434
  9. J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D.-R. Chen and L. Yang, "On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator," Nat. Photonics 4, 46-49 (2009). https://doi.org/10.1038/nphoton.2009.237
  10. F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, "Lithium-niobate-silica hybrid whispering-gallery-mode resonators," Adv. Mater. 27, 8075-8081 (2015). https://doi.org/10.1002/adma.201504722
  11. M. R. Foreman, D. Keng, E. Treasurer, J. R. Lopez, and S. Arnold, "Whispering gallery mode single nanoparticle detection and sizing: the validity of the dipole approximation," Opt. Lett. 42, 963-966 (2017). https://doi.org/10.1364/OL.42.000963
  12. T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, "Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section," Phys. Rev. Lett. 93, 103903 (2004). https://doi.org/10.1103/PhysRevLett.93.103903
  13. S. Shinohara, M. Hentschel, J. Wiersig, T. Sasaki, and T. Harayama, "Ray-wave correspondence in limacon-shaped semiconductor microcavities," Phys. Rev. A 80, 031801 (2009). https://doi.org/10.1103/physreva.80.031801
  14. J.-W. Ryu, and M. Hentschel, "Ray model and ray-wave correspondence in coupled optical microdisk," Phys. Rev. A 82, 033824 (2010). https://doi.org/10.1103/physreva.82.033824
  15. J. Kullig, and J. Wiersig, "Q spoiling in deformed optical microdisks due to resonance-assisted tunneling," Phys. Rev. E 94, 022202 (2016). https://doi.org/10.1103/PhysRevE.94.022202
  16. S. Lock, A. Backer, R. Ketzmerick, and P. Schlagheck, "Regular-to-chaotic tunneling rates: from the quantum to the semiclassical regime," Phys. Rev. Lett. 104, 114101 (2010). https://doi.org/10.1103/PhysRevLett.104.114101
  17. E. J. Heller, "Bound-state eigenfunctions of classically chaotic hamiltonian systems: scars of periodic orbits," Phys. Rev. Lett. 53, 1515 (1984). https://doi.org/10.1103/PhysRevLett.53.1515
  18. S.-B. Lee, J.-H. Lee, J.-S. Chang, H-. J. Moon, S. W. Kim, and K. An, "Observation of scarred modes in asymmetrically deformed microcylinder lasers," Phys. Rev. Lett. 88, 033903 (2002). https://doi.org/10.1103/PhysRevLett.88.033903
  19. J. Wiersig, "Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities," Phys. Rev. Lett. 97, 253901 (2006). https://doi.org/10.1103/PhysRevLett.97.253901
  20. J.-W. Ryu, S.-Y, Lee, and S.W. Kim, "Coupled nonidentical microdisks: avoided crossing of energy levels and unidirectional far-field emission," Phys. Rev. A 79, 053858 (2009). https://doi.org/10.1103/physreva.79.053858
  21. W. D. Heiss, "Repulsion of resonance states and exceptional points," Phys. Rev. E 61, 929 (2000). https://doi.org/10.1103/PhysRevE.61.929
  22. S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S. W. Kim, J.-H. Lee, and K. An, "Observation of an exceptional point in a chaotic optical microcavity," Phys. Rev. Lett. 103, 134101 (2009). https://doi.org/10.1103/PhysRevLett.103.134101
  23. L. Wang, D. Lippolis, Z. Y. Li, X.-F. Jiang, Q. Gong, and Y.-F. Xiao, "Statistics of chaotic resonances in an optical microcavity," Phys. Rev. E 93, 040201 (2016). https://doi.org/10.1103/PhysRevE.93.040201
  24. X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Loncar, L. Yang, and Y.-F. Xiao, "Chaos-assisted broadband momentum transformation in optical microresonators," Science 358, 344-347 (2017). https://doi.org/10.1126/science.aao0763
  25. K.-W. Park, S. Moo, Y. Shin, J. Kim, K. Jeong, and K. An, "Shannon entropy and avoided crossings in closed and open quantum billiards," Phys. Rev. E 97, 062205 (2018). https://doi.org/10.1103/PhysRevE.97.062205
  26. C. E. Shannon, "A mathematical theory of communication," Bell Syst. Tech. J. 27, 379-423 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  27. E.T. Jaynes, "Information theory and statistical mechanics," Phys. Rev. 106, 620 (1957). https://doi.org/10.1103/PhysRev.106.620
  28. J. W. Godden, F. L. Stahura, and J. Bajorath, "Variability of molecular descriptors in compound databases revealed by shannon entropy calculations," J. Chem. Inf. Comput. Sci. 40, 796-800 (2000). https://doi.org/10.1021/ci000321u
  29. B. J. Strait, and T. G. Dewey, "The shannon information entropy of protein sequences," Biophys. J. 71, 148-155 (1996). https://doi.org/10.1016/S0006-3495(96)79210-X
  30. H. Zenil, S. Hernández-Orozco, N. A. Kiani, F. Soler-Toscano, A. Rueda-Toicen, and J. Tegner, "A decomposition method for global evaluation of shannon entropy and local estimations of algorithmic complexity," Entropy 20, 605 (2018). https://doi.org/10.3390/e20080605
  31. R. González-Ferez, and J. S. Dehesa, "Shannon entropy as an indicator of atomic avoided crossings in strong parallel magnetic and electric fields," Phys. Rev. Lett. 91, 113001 (2003). https://doi.org/10.1103/PhysRevLett.91.113001
  32. Y. L. He, Y. Chen, J. N. Han, Z. B. Zhu, G. X. Xiang, H. D. Liu, B. H. Ma, and D. C. He, "Shannon entropy as an indicator of atomic avoided crossings for Rydberg potassium atoms interacting with a static electric field," Eur. Phys. J. D 69, 283 (2015). https://doi.org/10.1140/epjd/e2015-60397-7
  33. F. Arranz, R.Benito, and F. Borondo, "Shannon entropy at avoided crossing in the quantum transition from order to chaos," Phys. Rev. E 99, 062209 (2019). https://doi.org/10.1103/PhysRevE.99.062209
  34. J. Wiersig, "Boundary element method for resonances in dielectric microcavities," J. Opt. A 5, 53 (2002). https://doi.org/10.1088/1464-4258/5/1/308
  35. A. M. Zhang, and Y. L. Liu, "Improved three-dimensional bubble dynamics model based on boundary element method," J. Comput. Phys. 294, 208-223 (2015). https://doi.org/10.1016/j.jcp.2015.03.049
  36. Z. Liu, S. Sun, A. H. D. Cheng, and Y. Wang, "A fast multipole accelerated indirect boundary element method for broadband scattering of elastic waves in a fluid-saturated poroelastic domain," Int. J. Numer. Anal. Methods Geomech. 42, 2133-2160 (2018). https://doi.org/10.1002/nag.2848
  37. M. E. Gruber, and T. F. Eibert, "A hybrid Ewald-spectral cavity greens function boundary element method with spectral domain acceleration for modeling of over-moded cavities," IEEE Trans. Antennas Propag. 63, 2627-2635 (2015). https://doi.org/10.1109/TAP.2015.2418783
  38. I. Rotter, "A non-Hermitian Hamilton operator and the physics of open quantum systems," J. Phys. A: Math. Theor. 42, 153001 (2009). https://doi.org/10.1088/1751-8113/42/15/153001
  39. K.-W. Park, S. Moon, H. Jeong, J. Kim, and K. Jeong, "Non-hermiticity and conservation of orthogonal relation in dielectric microcavity," J. Phys. Commun. 2, 075007 (2018). https://doi.org/10.1088/2399-6528/aacfda
  40. R. A. Kullback, and R. A. Leibler, "On information and sufficiency," Ann. Math. Stat. 22, 79-86 (1951). https://doi.org/10.1214/aoms/1177729694
  41. J. N. Kapur, and H. K. Kesavan, "Entropy Optimization Principles and Their Applications," in Entropy and energy dissipation in water resources, V. P. Singh, M. Fiorentino. Ed. (Springer, Dordrecht, Nederlands. 1992), pp. 3-20.
  42. R. L. Plackett, "Karl pearson and the chi-squared test," Int. Stat. Rev. 51, 59-72 (1983). https://doi.org/10.2307/1402731
  43. F. Evers, and A. D. Mirlin, "Fluctuations of the inverse participation ratio at the Anderson transition," Phys. Rev. Lett. 84, 3690 (2000). https://doi.org/10.1103/PhysRevLett.84.3690
  44. N. C. Murphy, R. Wortis, and W. Atkinson, "Generalized inverse participation ratio as a possible measure of localization for interacting systems," Phys. Rev. B 83, 184206 (2011). https://doi.org/10.1103/physrevb.83.184206