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We show that a simple double-slit experimental setup can be used to measure the thickness of a trans-
parent thin film. The phase difference between the light passing through one slit covered with photore-
sist film and that passing through the other slit without film was estimated using the simple Fraunhofer 
diffraction formula for a double slit. Our method gave error of a few percent or less for film thicknesses 
ranging from 0.7 to 1.7 μm, demonstrating that a laboratory double-slit experimental setup can be uti-
lized in practical film-thickness measurements.
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I. INTRODUCTION

Light interference with double slits is a conclusive ex-
periment in proving the wave nature of light. (Although 
Thomas Yong did not actually use double slits in his par-
adigm-changing experiment, double-slit experiments are 
generally called “Young’s experiments”. Instead of double 
slits, he used a thin cardboard to split the wavefront of the 
incoming light beam [1].) 

Double-slit experiment utilizes a wavefront-division 
scheme to produce interference. In terms of efficiency 
or brightness of fringes, often amplitude division using a 
beam splitter is advantageous, while in some cases, as in 
this study, wavefront division can be useful. Although this 
experiment is familiar to most researchers and students in 
various fields of science and engineering, its applications 
in measurements seem to be rare. We could find only a few 
examples: Kim et al. [2] developed a method for inspecting 
the thickness uniformity of glass plates, and Emile et al. [3] 
studied the Marangoni effect in soap films based on double-
slit experiments.

Another example of the application of double-slit in-
terference is wavelength measurement. Since the fringe 
spacing of a double-slit interference pattern is determined 
by the slit separation s and the wavelength λ  of the incident 

monochromatic light λ , such a simple experimental setup 
can be utilized as a wavelength meter. Amazingly, the re-
solving power was estimated to be 2s/λ , which can be as 
large as 4,000 under ideal circumstances [4]. Although this 
is overestimated because in practice one cannot measure 
the fringes in the entire half-space (–90° to +90°), a simple 
double-slit apparatus seems to be a perfect tool for demon-
strating the principles of interferometric measurement of 
wavelength and other parameters, such as film thickness.

There are diverse methods for measuring the thickness 
of a thin film, including mechanical scanning of a probe, 
Michelson interferometry, electron microscopy, and wave-
guide (WG) coupling through a high-index prism. Each 
method provides fairly accurate results, together with some 
limits. In the mechanical-probe scanning method, probe-
surface contact is essential; therefore, a large error may 
be involved in the thickness measurement of soft films or 
very thin films due to scratching of the surface, even with 
a very light probe. An electron microscope can accurately 
measure very small thicknesses, but a disadvantage is that 
it takes a lot of effort to prepare a sample with a nice cross 
section. The Michelson interferometer has advantages such 
as no mechanical contact and easy sample preparation [5]; 
a disadvantage is that it is sensitive to mechanical vibra-
tions. The WG-coupling method has the great advantage of 
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providing accurate values of thickness and refractive index 
simultaneously [6]; however, a disadvantage is that very 
thin films cannot be measured, because WG modes do not 
exist when the film is too thin.

In this report we propose a method to measure the 
phase change of the light waves passing through a thin 
film, which leads to an estimation of the thickness by us-
ing a very simple double-slit setup. A coherent light beam 
is illuminated on two slits almost in contact with a thin 
film coated on a transparent substrate. When the film is 
partially removed on the substrate area adjacent to one of 
the two slits, the interference/diffraction pattern changes 
from that obtained through a uniform reference plate, due 
to the phase difference between the two light waves pass-
ing through the two slits. A phase difference is obtained by 
comparing the diffraction pattern to that for the reference 
plate, from which one can evaluate the thickness of the thin 
film. We prove the validity of this method by comparing the 
results to the thickness values measured by a WG-coupling 
method. 

II. EXPERIMETAL SETUP AND  
METHOD OF FRINGE ANALYSIS 

In typical double-slit experiments, one needs twin slits 
separated by submillimeter distances to form an analyzable 
interference pattern on a screen placed a few meters away. 
In our experiment, however, it would not be easy to align 
the phase-step boundary line completely under the opaque 
region between the slits, for such a small slit separation. To 
circumvent this difficulty, we used slits spaced several mil-
limeters apart. 

A schematic diagram of our experimental setup is shown 
in Fig. 1. Instead of plane-wave illumination, a spreading 
laser beam from a point source (beam waist formed by the 
first lens L1) was incident upon the entire double-slit region 
(almost in contact with the sample), and the transmitted 
light was collected on a screen through the second lens L2. 
In the arrangement in which the image of the point source 
is formed on the screen, a Fraunhofer diffraction pattern 
of the double slits is obtained (see Appendix for details), 

which makes simple, accurate analysis possible. 
The phase delay of the light passing through the thin 

film can be evaluated by comparing the Fraunhofer diffrac-
tion pattern to that of a reference plate. At normal incidence 
the phase difference is given by 

 � � ��
� ��� � ����, (1)

  
, (1)

where nf and na are the refractive indices of the film mate-
rial and the atmosphere respectively, d is the thickness of 
the film, and λ  is the wavelength of the incident light in 
vacuum. Assuming equal and uniform illumination of each 
slit, the intensity distribution of the Fraunhofer diffraction 
as a function of diffraction angle θ  can be calculated as [2, 5]
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Here I0 is a constant, s is the slit separation (distance be-
tween the centers of the two slits), w is the width of each 
slit, and 
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For a uniform reference sample with ϕ = 0, this equation 
renders the well-known symmetric double-slit Fraunhofer 
diffraction pattern shown in Fig. 2 [5].

Also in that figure, we plot the diffraction patterns of 
thin films with phase steps corresponding to two different 
values of ϕ calculated by Eq. (1). For a nonzero phase step, 
the central maximum moves to one side, breaking the sym-
metry. When ϕ = 2π, the diffraction pattern returns to that 
of the reference sample.

The maxima of diffraction occur when (πs/λ) sin θ + ϕ/2 = 
mπ (m = 0, ±1, ±2, …). For the reference sample (ϕ = 0) 
the second maximum corresponds to (πs/λ) sin θ  = π, from 
which one can determine the angle D between the principal 
maximum (θ  = 0) and the second maximum. Since (πs/λ )  
sin θ  = (πs/λ) sin D = π [Eq. (3)], and assuming that the dif-

FIG. 1. Experimental setup.
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fraction angle is small, we obtain 

 � � ���� � �
�. (4)

  

 

  

. (4)

When there is a phase step, we set (πs/λ) sin θ  + ϕ/2 = 0 
in Eq. (2) to find the angular shift S of the principal maxi-
mum. Assuming again a small angular range of diffraction, 
we obtain 

 � � � � ��� � � ���
��� . (5)

  

 

  

. (5)

It should be noted that the ratio between S and D results 
in the following simple relation:

 | �� | =
�
�� . (6)

  

. (6)

Therefore, by measuring the relative angular shift S with 
respect to D, the phase difference ϕ due to the presence of 
the film can be directly obtained. Finally, the thickness d is 
related to the phase difference by Eq. (1), when the refrac-
tive indices nf and na are known. Such a relative measure-
ment has a great advantage over absolute measurements 
of the diffraction parameters, which involve the accurate 
slit dimensions and the distance between the slits and the 
screen.

However, one obtains multiple possible values of the 
thickness, because phase differences of ϕ(|ϕ| < 2π) and ϕ + 
2mπ (m = 1, 2, 3, …) would produce exactly the same dif-
fraction patterns. This 2π-phase-ambiguity problem can be 
circumvented by measuring the absorbance at one wave-
length (usually in the ultraviolet) and comparing the thick-
ness to that of a reference sample calibrated for a thickness-

absorbance relation (Here a rough estimate of the thickness 
range is enough).

In the discussion above, in locating the relevant maxima 
we neglected the factor (sin β /β)2 in Eq. (2). Although we 
obtained a very simple and physically clear result (Eq. (6)) 
by neglecting the envelope, one can suspect that there could 
be slight modifications in the locations of the maxima in 
the real diffraction pattern. Therefore, we fit the experimen-
tal diffraction patterns to Eq. (2) in most of our subsequent 
analyses.

III. EXPERIMENTS AND ANALYSES

Thin films of various thicknesses are made from a pho-
toresist (Clariant, AZ5214E) by spin coating on fused-silica 
substrates (1 mm thick, 25.4 mm in diameter). For each 
coated sample, half of the film’s area is exposed to a UV 
light, and then removed with a developer to form a phase 
step. For easy fabrication of double slits and alignment, two 
parallel slits of width w = 2.3 mm are formed on a black 
acrylic plate with s = 3.9 mm (the distance between the 
centers of the slits). The phase-step boundary line can be 
completely covered by the opaque region between the two 
slits, and a few interference fringes are contained within the 
major diffraction envelope with this configuration. A He-
Ne laser beam is focused by the first lens L1, with a focal 
length of 125 mm, to form a beam waist, as shown in Fig. 
1. The focal length of the second lens (L2) is 1 m, to form 
a diffraction pattern broad enough to cover the entire active 
region of a linear charge-coupled-device (ALPHALAS, 
CCD-S3600-D(-UV)) array placed at the screen plane.

Figure 3(a) shows the measured diffraction patterns of 
a phase step (sample #1) and a reference sample (uncoated 
fused-silica substrate). First we try to analyze the results 
roughly by reading D and S in units of pixels and estimat-

FIG. 2. Calculated Fraunhofer diffraction patterns for phase steps of 0 (dashed line), π/2 (dotted line), and π (solid line), with s = 3.9 
mm, w = 2.3 mm, and λ = 633 nm.
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ing the phase ϕ using Eq. (6) (neglecting the envelope 
in Eq. (2)). We fit the maxima in the diffraction patterns 
to quadratic functions to determine their exact locations, 
from which we obtain D = 33.8 and S = 24.0. By Eq. (6), 
the phase ϕ is calculated to be 1.42π, resulting in possible 
thicknesses of 0.713, 1.72, 2.72 μm, ... by Eq. (1), using 
the known values of the refractive indices of air (na = 1.00) 
and our photoresist (nf = 1.63 ± 0.01, measured by the WG-
coupling method described below). Since the photoresist 
we use has an absorption resonance at 279 nm, the approxi-
mate thickness range can be determined by comparing the 
absorbance of the thin film to that of a thin film of known 
thickness, resolving the 2π-phase-ambiguity problem. In 
Fig. 4 a trend line is drawn by measuring the absorbance 
values at 279 nm for photoresist thin films with thicknesses 
of 0.82, 1.04, and 1.24 μm, measured by the WG-coupling 
method [6]. Since the absorbance value of sample #1 
marked on this line indicates that the thickness lies in the 
range of 0.7–0.8 μm, we conclude that the correct thickness 
is 0.713 μm. 

As plotted in Fig. 3(b) with ϕ = 1.42π in Eq. (6), the cal-
culated diffraction pattern agrees well with the data in Fig. 
3(a). We plot them separately because they are almost iden-
tical. A slight offset of the zero level in the data is attributed 
to light scattering in the charge-coupled-device (CCD) 
pixels and a small imbalance in the slit width or the light-
amplitude division.

The above analysis gives a rough estimate of the film’s 
thickness. Picking up a single pixel position is the most 
direct and simple way, but may lead to error in locating 
the real location of a maximum, due to the presence of the 
envelope in Eq. (2) and the possible nonuniform responses 
of the CCD pixels. Therefore, we fit the same experimental 
data to Eq. (2) with a numerical fitting routine in MAT-
LAB, with the phase ϕ and the constant intensity factor I0 
as the only floating parameters. As a result, we obtain ϕ = 
1.414π, which gives a thickness value of 0.710 μm through 
Eq. (1). We see that this ϕ value deviates only by 3 nm from 
the rough estimate above using Eq. (2), which lies within 
the measurement uncertainty discussed below.

In principle, the uncertainty in the thickness estimation 
above is determined by the uncertainty of the refractive 
index of the thin film’s material (~6 × 10–3 here), because 
nf d is determined by Eq. (1) from the measured phase ϕ. 
The uncertainty in the index in this work comes from the 
WG-coupling method (~10–4 [6]) and the fluctuation among 
the samples (nf = 1.63 ± 0.01). The latter gives the major 
uncertainty of ~6 × 10–3, which limits the accuracy of the 
absolute thickness value of the current sample (photoresist 
film) by our method, while the former (~10–4) can be used 
to verify the validity of our method using the same sample. 

In addition, there are several factors affecting the uncer-
tainty in measuring the phase ϕ, such as the uniformity of 
film, detection noise due to unwanted internal reflections, 
nonzero minima, and the finite size of the CCD’s pixels. 
The nonzero minima do not affect our fitting result sig-
nificantly. We also cannot observe the interference fringes 
caused by internal reflections, owing to the small index dif-
ference between film and substrate (approximately 0.17). 

FIG. 3. Diffraction patterns. (a) Experimental diffraction patterns of sample #1 (solid line) and the reference sample (dashed line). (b) 
Calculated diffraction patterns corresponding to those in (a) with ϕ = 1.42π.

FIG. 4. Absorbance of photoresist film at λ = 279 nm as a 
func tion of thickness. Filled circles: measured points. The ab-
sorbance of sample #1 is denoted by a cross (+). The trend line 
represents optical density as a function of photoresist thick ness.
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In addition, we move the sample, repeating the experiment 
and finding no changes in the measured results within the 
resolution of the CCD pixels, verifying the uniformity of 
the film. 

Finally, the CCD pixel size (interval) could be another 
major limiting factor in the measurement uncertainty. The 
phase uncertainty due to finite pixel size can be evaluated 
from Eq. (6) as follows [7]:
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�
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where ∆S and ∆D are the uncertainties involved in locating 
the maxima at specific pixels, both of which may be set to 
0.5. Then Eq. (7) is simplified to 
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Table 1 shows the error propagation in the estimation of 
the phase and the thickness of the photoresist film (sample 
#1), according to Eq. (8). The resultant uncertainties are 
2.5% for both phase and thickness. The fractional errors 
are the same because the uncertainty due to the sample-to-
sample index fluctuation was not considered in this table. 
If we were to include this contribution (estimated to be 12 
nm, based on Eq. (1)), the uncertainty in the absolute thick-
ness would be �18� + 12� 

 

 = 22 nm. 
The same experiment is performed on films with differ-

ent thicknesses, and the thicknesses and refractive index of 
the thin films are confirmed by the WG-coupling method, 
using a high-index prism coupler (GGG-prism, Sairontech, 
SPA-4000) to verify the validity of our experiment and 

analysis method. The WG-coupling method can determine 
thickness and refractive index simultaneously, by measur-
ing the coupling angles of a collimated monochromatic 
beam into the planar waveguide formed by the thin film [6]. 
In the WG-coupling experiment, an average index value 
of 1.63 ± 0.01 is obtained together with film thicknesses. 
The error in thickness measurement with the WG-coupling 
method is reported to be ~20 nm [6], which is similar to 
that for the double-slit method (18 nm). As a result, the 
thicknesses measured by the double-slit diffraction experi-
ments deviates from those measured by the WG-coupling 
method by 6 nm or less, as shown in Table 2, validating the 
double-slit method. Note that the deviations are within the 
uncertainty range discussed above.

Finally, an attempt is made to measure the thickness of a 
very thin film. A double-slit diffraction pattern for sample 
#6 is shown in Fig. 5. Because this thin film does not sup-
port any waveguide mode, it is impossible to compare the 
result with that from the WG-coupling method. A phase of 
ϕ = 0.121π is obtained by analyzing the fringes as above. 
Possible thicknesses satisfying this phase difference are 60 
nm, 1.07 μm, 2.07 μm, ... , among which 60 nm is chosen 
to be the correct one because the measured absorbance 
indicates that the thickness lies in the range of 0–0.5 μm 
(see Fig. 4). In Table 3, the error in phase evaluation is 
calculated to be 0.095 using Eq. (8), which amounts to a 
fractional error of 25%, resulting in the same fractional er-
ror in the thickness evaluation. Such a large fractional error 
can be expected for a very thin film, considering that the 
diffraction pattern shifts just a few pixels, as shown in Fig. 

TABLE 1. Uncertainties in the thickness measurement of 
sample #1

S (pixels) D (pixels) ϕ (rad) d (nm)
23.7 ± 0.5 33.5 ± 0.5 1.414π ± 0.114 710 ± 18

TABLE 2. Comparison of thicknesses of samples #1–5 mea-
sured by the WG-coupling method and by double-slit dif frac-
tion

Sample
Thickness measured 

by WG coupling 
(µm)

Thickness measured 
by double-slit 

diffraction (µm)
Difference 

(nm)

#1 0.704 0.710 6
#2 0.820 0.825 5
#3 1.04 1.04 0
#4 1.24 1.24 0
#5 1.74 1.74 0

FIG. 5. Experimental diffraction patterns of sample #6 (solid 
line) and the reference sample (dashed line).

TABLE 3. Uncertainties in the thickness measurement of 
sample #6

S (pixels) D (pixels) ϕ (rad) d (nm)
2.0 ± 0.5 33.4 ± 0.5 0.121π ± 0.095 60 ± 15
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5, while the error in the phase evaluation is bounded by a 
constant value of π/D, as given in Eq. (8).

IV. DISCUSSION

Since the phase ϕ is in principle estimated from the mea-
sured S and D values through Eq. (6), the uncertainty in the 
phase measurement is determined mainly by the resolution 
of the CCD array. As shown in Tables 1 and 3, a smaller 
pixel spacing would give a smaller phase-measurement er-
ror. In the current experimental arrangement, the distance D 
between the central and the next maximum of the diffrac-
tion pattern for the reference sample is around 33 ± 0.5 pix-
els. The 0.5-pixel error in locating the diffraction maxima 
corresponds to a phase error of at least 0.095, which is 
equivalent to a thickness error of 15 nm. 

For a fixed CCD pixel spacing (8 μm for our CCD), it is 
possible to increase the width of the diffraction pattern to 
reduce the measurement uncertainty. Factors affecting the 
width of the pattern are the slit separation, the wavelength 
of the incident light, and the distance between the CCD 
plane and the slit (or lens L2). For a fixed wavelength, the 
diffraction pattern is more widely spread for a smaller slit 
separation and a larger slit-to-screen distance. Using a lens 
of longer focal length (1 m in this experiment) would in-
crease the screen-to-slit (or -lens) distance, which in turn 
would broaden the diffraction pattern, reducing the mea-
surement uncertainty as a result (see Appendix).

Our method has advantages over the other methods for 
measuring thin-film thickness; some of them are that the 
double-slit method is noncontact (compared to the mechan-
ical scanning of a probe), vibration-insensitive (compared 
to Michelson interferometry), and simple and low-cost 
(compared to electron microscopy). Our method could also 
measure a very thin film, which is not possible with the 
WG-coupling method. On the other hand, a disadvantage 
is that refractive-index information is necessary to estimate 
the film thickness, because the phase is proportional to the 
product of the film thickness and the refractive-index dif-
ference between the film and the atmosphere. Although 
it works well for materials with a reproducible refractive 
index, it would be desirable to be able to measure the thick-
ness independently. 

V. CONCLUSION

We have applied a double-slit experiment to measure the 
thickness of a thin film when the refractive index is known. 
With proper arrangement of optical elements we could ob-
tain Fraunhofer diffraction, which made possible a simple 
and accurate estimation of film thickness, without requiring 
a lithographically defined phase step or critical alignment. 
Because the relative shift of the principal maximum of the 
diffraction pattern was measured with respect to the fringe 
spacing of a reference sample, our method was free from 
the errors involved in measurements of absolute experimen-

tal parameters, such as slit separation and distance to the 
screen. 

As a further study, we can suggest the following meth-
ods to measure the film thickness independently from any 
refractive-index information: using two different surround-
ing media to cover the phase step, or performing a double-
slit experiment in reflection mode.

APPENDIX

Here we give a detailed proof of the fact that a Fraunhofer 
diffraction pattern is formed at the screen plane when a and 
b satisfy the geometrical image-forming relation

 1
� +

1
� =

1
� , (A1)

  

  

, (A1)

by calculating the diffracted electric field amplitudes in the 
Fresnel approximation at the planes shown in Fig. 1, repre-
sented by two-dimensional Cartesian coordinates (x1, y1), (x2, 
y2), and (x3, y3) respectively [8]. 

The electric field just before the slits can be expressed as 

 �(��, ��) � �(��, ��)��
�
������
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where P(x1, y1) is the aperture function of the object (slits 
and film), and the phase factor represents the wavefront 
of the Gaussian beam emerging from the beam waist lo-
cated at a distance d1 from the object. After propagating a 
distance d2, the electric field just before lens L2 can be ex-
pressed as 

 ��(��, ��) = 1
���
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omitting the constant phase factor. After passing through 
the lens, the electric field must be multiplied by the lens 
transmission function tl (x2, y2), resulting in 

 ��(��� ��) = ��(��� ��)��(��� ��)

= 1
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After propagating a distance b from the lens, the electric 
field on the screen can be expressed and rearranged as 
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Using the image-forming relation in Eq. (A1), this can 
be simplified to give 
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��
� � and �� � �� − ���

��
����� +

��
� � . 

The definite integral over x′ can be evaluated to give a 
Fresnel integral 
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and likewise for the integration over y′. Therefore, we fi-
nally obtain the diffracted electric field amplitude on the 
screen within the Fresnel approximation:
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This is the Fourier transformation of the aperture func-
tion P(x1, y1) with a set of spatial frequencies 

 �� =
���
���� and �� =

���
���� . (A9)
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When the lens is placed very close to the object, d1 ≅ 
a and fx ≅ x3/λb. Therefore, the width of the Fraunhofer 
diffraction pattern is proportional to the lens-to-screen 
distance b, and inversely proportional to the separation be-
tween the two slits.
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