DOI QR코드

DOI QR Code

Phytochemical analysis of Panax species: a review

  • Yang, Yuangui (The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine) ;
  • Ju, Zhengcai (The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine) ;
  • Yang, Yingbo (The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine) ;
  • Zhang, Yanhai (The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine) ;
  • Yang, Li (The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine) ;
  • Wang, Zhengtao (The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine)
  • Received : 2019.09.03
  • Accepted : 2019.12.31
  • Published : 2021.01.15

Abstract

Panax species have gained numerous attentions because of their various biological effects on cardiovascular, kidney, reproductive diseases known for a long time. Recently, advanced analytical methods including thin layer chromatography, high-performance thin layer chromatography, gas chromatography, high-performance liquid chromatography, ultra-high performance liquid chromatography with tandem ultraviolet, diode array detector, evaporative light scattering detector, and mass detector, two-dimensional high-performance liquid chromatography, high speed counter-current chromatography, high speed centrifugal partition chromatography, micellar electrokinetic chromatography, high-performance anion-exchange chromatography, ambient ionization mass spectrometry, molecularly imprinted polymer, enzyme immunoassay, 1H-NMR, and infrared spectroscopy have been used to identify and evaluate chemical constituents in Panax species. Moreover, Soxhlet extraction, heat reflux extraction, ultrasonic extraction, solid phase extraction, microwave-assisted extraction, pressurized liquid extraction, enzyme-assisted extraction, acceleration solvent extraction, matrix solid phase dispersion extraction, and pulsed electric field are discussed. In this review, a total of 219 articles published from 1980 to 2018 are investigated. Panax species including P. notoginseng, P. quinquefolius, sand P. ginseng in the raw and processed forms from different parts, geographical origins, and growing times are studied. Furthermore, the potential biomarkers are screened through the previous articles. It is expected that the review can provide a fundamental for further studies.

Keywords

References

  1. Lu Q. A review on studies of Panax plant taxonomy. J Jilin Agr Univ 1992;14:107-11.
  2. The State Pharmacopoeia Commission. Chinese Pharmacopoeia. Beijing. 2015.
  3. Ru W, Wang D, Xu Y, He X, Sun YE, Qian L, Zhou X, Qin Y. Chemical constituents and bioactivities of Panax ginseng (C. A. Mey.). Drug Discov Ther 2015;9:23-32. https://doi.org/10.5582/ddt.2015.01004
  4. Kim DH. Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng. J Ginseng Res 2012;36:1-15. https://doi.org/10.5142/jgr.2012.36.1.1
  5. Yang WZ, Hu Y, Wu WY, Ye M, Guo DA. Saponins in the genus Panax L. (Araliaceae): a systematic review of their chemical diversity. Phytochemistry 2014;106:7-24. https://doi.org/10.1016/j.phytochem.2014.07.012
  6. Yang H, Lee DY, Kang KB, Kim JY, Kim SO, Yoo YH, Sung SH. Identification of ginsenoside markers from dry purified extract of Panax ginseng by a dereplication approach and UPLC-QTOF/MS analysis. J Pharm Biomed Anal 2015;109:91-104. https://doi.org/10.1016/j.jpba.2015.02.034
  7. Yao CL, Pan HQ, Wang H, Yao S, Yang WZ, Hou JJ, Jin QH, Wu WY, Guo DA. Global profiling combined with predicted metabolites screening for discovery of natural compounds: characterization of ginsenosides in the leaves of Panax notoginseng as a case study. J Chromatogr A 2018;1538: 34-44. https://doi.org/10.1016/j.chroma.2018.01.040
  8. Shin BK, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res 2015;39:287-98. https://doi.org/10.1016/j.jgr.2014.12.005
  9. Qi LW, Wang CZ, Yuan CS. Ginsenosides from American ginseng: chemical and pharmacological diversity. Phytochemistry 2011;72:689-99. https://doi.org/10.1016/j.phytochem.2011.02.012
  10. Wang Y, Choi HK, Brinckmann JA, Jiang X, Huang L. Chemical analysis of Panax quinquefolius (North American ginseng): a review. J Chromatogr A 2015;1426:1-15. https://doi.org/10.1016/j.chroma.2015.11.012
  11. Qi LW, Wang CZ, Yuan CS. Isolation and analysis of ginseng: advances and challenges. Nat Prod Rep 2011;28:467-95. https://doi.org/10.1039/c0np00057d
  12. Zhang S, Chen R, Wu H, Wang C. Ginsenoside extraction from Panax quinquefolium L. (American ginseng) root by using ultrahigh pressure. J Pharm Biomed Anal 2006;41:57-63. https://doi.org/10.1016/j.jpba.2005.10.043
  13. Dong TT, Cui XM, Song ZH, Zhao KJ, Ji ZN, Lo CK, Tsim KW. Chemical assessment of roots of Panax notoginseng in China: regional and seasonal variations in its active constituents. J Agric Food Chem 2003;51:4617-23. https://doi.org/10.1021/jf034229k
  14. Kim JS. Investigation of phenolic, flavonoid, and vitamin contents in different parts of Korean Ginseng (Panax ginseng C.A. Meyer). Prev Nutr Food Sci 2016;21:263-70. https://doi.org/10.3746/pnf.2016.21.3.263
  15. Wang JR, Yau LF, Gao WN, Liu Y, Yick PW, Liu L, Jiang ZH. Quantitative comparison and metabolite profiling of saponins in different parts of the root of Panax notoginseng. J Agric Food Chem 2014;62:9024-34. https://doi.org/10.1021/jf502214x
  16. Yeo CR, Yong JJ, Popovich DG. Isolation and characterization of bioactive polyacetylenes Panax ginseng Meyer roots. J Pharm Biomed Anal 2017;139: 148-55. https://doi.org/10.1016/j.jpba.2017.02.054
  17. Yang Y, Chen L, Zhang XX, Guo Z. Microwave assisted extraction of major active ingredients in Panax quinquefolium L. J Liq Chromatogr R T 2009;27:3203-11. https://doi.org/10.1081/JLC-200034881
  18. Wang Y, You J, Yu Y, Qu C, Zhang H, Ding L, Zhang H, Li X. Analysis of ginsenosides in Panax ginseng in high pressure microwave-assisted extraction. Food Chem 2008;110:161-7. https://doi.org/10.1016/j.foodchem.2008.01.028
  19. Wan JB, Lai CM, Li SP, Lee MY, Kong LY, Wang YT. Simultaneous determination of nine saponins from Panax notoginseng using HPLC and pressurized liquid extraction. J Pharm Biomed Anal 2006;41:274-9. https://doi.org/10.1016/j.jpba.2005.10.023
  20. Lee HS, Lee HJ, Yu HJ, Ju do W, Kim Y, Kim CT, Kim CJ, Cho YJ, Kim N, Choi SY, et al. A comparison between high hydrostatic pressure extraction and heat extraction of ginsenosides from ginseng (Panax ginseng CA Meyer). J Sci Food Agric 2011;91:1466-73. https://doi.org/10.1002/jsfa.4334
  21. Shin JS, Ahn SC, Choi SW, Lee DU, Kim BY, Baik MY. Ultra high pressure extraction (UHPE) of ginsenosides from Korean Panax ginseng powder. Food Sci Biotechno 2010;19:743-8. https://doi.org/10.1007/s10068-010-0104-0
  22. Hou J, He S, Ling M, Li W, Dong R, Pan Y, Zheng Y. A method of extracting ginsenosides from Panax ginseng by pulsed electric field. J Sep Sci 2010;33:2707-13. https://doi.org/10.1002/jssc.201000033
  23. Shi X, Jin Y, Liu J, Zhou H, Wei W, Zhang H, Li X. Matrix solid phase dispersion extraction of ginsenosides in the leaves of Panax ginseng C. M. Mey. Food Chem 2011;129:1253-7. https://doi.org/10.1016/j.foodchem.2011.04.067
  24. Vanhaelen-Fastre RJ, Faes ML, Vanhaelen MH. High-performance thin-layer chromatographic determination of six major ginsenosides in Panax ginseng. J Chromatogr A 2000;868:269-76. https://doi.org/10.1016/S0021-9673(99)01253-4
  25. Cheong KL, Wu DT, Hu DJ, Zhao J, Cao KY, Qiao CF, Han BX, Li SP. Comparison and characterization of the glycome of Panax species by high-performance thin-layer chromatography. J Planar Chromatogr 2014;27:449-53. https://doi.org/10.1556/JPC.27.2014.6.8
  26. Lee TM, Der Marderosian A. Two-dimensional TLC analysis of ginsenosides from root of dwarf ginseng (Panax trifolius L.) Araliaceae. J Pharm Sci 1981;70:89-91. https://doi.org/10.1002/jps.2600700119
  27. Kasote D, Ahmad A, Chen W, Combrinck S, Viljoen A. HPTLC-MS as an efficient hyphenated technique for the rapid identification of antimicrobial compounds from propolis. Phytochem Lett 2015;11:326-31. https://doi.org/10.1016/j.phytol.2014.08.017
  28. Tuzimski T. Two-dimensional TLC with adsorbent gradients of the type silica-octadecyl silica and silica-cyanopropyl for separation of mixtures of pesticides. J Planar Chromatogr 2005;18:349-57. https://doi.org/10.1556/JPC.18.2005.5.3
  29. Cho IH, Lee HJ, Kim YS. Differences in the volatile compositions of ginseng species (Panax sp.). J Agric Food Chem 2012;60:7616-22. https://doi.org/10.1021/jf301835v
  30. Bombardelli EBA, Gabetta B, Martinelli EM. Gas-liquid chromatographic method for determination of ginsenosides in Panax ginseng. J Chromatogr A 1980;196:121-32. https://doi.org/10.1016/S0021-9673(00)80364-7
  31. Jung MY, Jeon BS, Bock JY. Free, esterified, and insoluble-bound phenolic acids in white and red Korean ginsengs (Panax ginseng C.A. Meyer). Food Chem 2002;79:105-11. https://doi.org/10.1016/S0308-8146(02)00185-1
  32. Xie GX, Qiu YP, Qiu MF, Gao XF, Liu YM, Jia W. Analysis of dencichine in Panax notoginseng by gas chromatography-mass spectrometry with ethyl chloroformate derivatization. J Pharm Biomed Anal 2007;43:920-5. https://doi.org/10.1016/j.jpba.2006.09.009
  33. Koh HL, Lau AJ, Chan EC. Hydrophilic interaction liquid chromatography with tandem mass spectrometry for the determination of underivatized dencichine (beta-N-oxalyl-L-alpha,beta-diaminopropionic acid) in Panax medicinal plant species. Rapid Commun Mass Spectrom 2005;19:1237-44. https://doi.org/10.1002/rcm.1928
  34. Mao Q, Yang J, Cui XM, Li JJ, Qi YT, Zhang PH, Wang Q. Target separation of a new anti-tumor saponin and metabolic profiling of leaves of Panax notoginseng by liquid chromatography with eletrospray ionization quadrupole time-of-flight mass spectrometry. J Pharm Biomed Anal 2012;59:67-77. https://doi.org/10.1016/j.jpba.2011.10.004
  35. Lee DY, Kim JK, Shrestha S, Seo KH, Lee YH, Noh HJ, Kim GS, Kim YB, Kim SY, Baek NI. Quality evaluation of Panax ginseng roots using a rapid resolution LC-QTOF/MS-based metabolomics approach. Molecules 2013;18:14849-61. https://doi.org/10.3390/molecules181214849
  36. Mao Q, Bai M, Xu JD, Kong M, Zhu LY, Zhu H, Wang Q, Li SL. Discrimination of leaves of Panax ginseng and P. quinquefolius by ultra high performance liquid chromatography quadrupole/time-of-flight mass spectrometry based metabolomics approach. J Pharm Biomed Anal 2014;97:129-40. https://doi.org/10.1016/j.jpba.2014.04.032
  37. Washida D, Kitanaka S. Determination of polyacetylenes and ginsenosides in Panax species using high performance liquid chromatography. Chem Pharm Bull 2003;51:1314-7. https://doi.org/10.1248/cpb.51.1314
  38. Chung IM, Lim JJ, Ahn MS, Jeong HN, An TJ, Kim SH. Comparative phenolic compound profiles and antioxidative activity of the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) according to cultivation years. J Ginseng Res 2016;40:68-75. https://doi.org/10.1016/j.jgr.2015.05.006
  39. Lee DG, Lee J, Kim KT, Lee SW, Kim YO, Cho IH, Kim HJ, Park CG, Lee S. Highperformance liquid chromatography analysis of phytosterols in Panax ginseng root grown under different conditions. J Ginseng Res 2018;42:16-20. https://doi.org/10.1016/j.jgr.2016.10.004
  40. Bai H, Wang S, Liu J, Gao D, Jiang Y, Liu H, Cai Z. Localization of ginsenosides in Panax ginseng with different age by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry imaging. J Chromatogr B Analyt Technol Biomed Life Sci 2016;1026:263-71. https://doi.org/10.1016/j.jchromb.2015.09.024
  41. Soldati F, Sticher O. HPLC separation and quantitative determination of ginsenosides from Panax ginseng, Panax quinquefolium and from ginseng drug preparations. 2nd communication. Planta Med 1980;39:348-57. https://doi.org/10.1055/s-2008-1074929
  42. Zhang K, Wang X, Ding L, Li J, Qu CL, Chen LG, Jin HY, Mang HQ. Determination of seven major ginsenosides in different parts of Panax quinquefolius L.(American Ginseng) with different ages. Chem Res Chinese U 2008;24:707-11.
  43. Gafner S, Bergeron C, McCollom MM, Cooper LM, Mcphail KL, Gerwick WH, Angerhofer CK. Evaluation of the efficiency of three different solvent systems to extract triterpene saponins from roots of Panax quinquefolius using high-performance liquid chromatography. J Agr Food Chem 2004;52:1546-50. https://doi.org/10.1021/jf0307503
  44. Lau AJ, Woo SO, Koh HL. Analysis of saponins in raw and steamed Panax notoginseng using high-performance liquid chromatography with diode array detection. J Chromatogr A 2003;1011:77-87. https://doi.org/10.1016/S0021-9673(03)01135-X
  45. Wang YH, Hong CY, Chen CF, Tsai TH. Determination of triacylglycerols in Panax Pseudo-ginseng by HPLC polymeric column. J Liq Chromatogr R T 2006;19:2497-503.
  46. Qian ZM, Wan JB, Zhang QW, Li SP. Simultaneous determination of nucleobases, nucleosides and saponins in Panax notoginseng using multiple columns high performance liquid chromatography. J Pharm Biomed Anal 2008;48:1361-7. https://doi.org/10.1016/j.jpba.2008.09.038
  47. Lee SI, Kwon HJ, Lee YM, Lee JH, Hong SP. Simultaneous analysis method for polar and non-polar ginsenosides in red ginseng by reversed-phase HPLCPAD. J Pharm Biomed Anal 2012;60:80-5. https://doi.org/10.1016/j.jpba.2011.08.030
  48. Du XW, Wills RBH, Stuart DL. Changes in neutral and malonyl ginsenosides in American ginseng (Panax quinquefolium) during drying, storage and ethanolic extraction. Food Chem 2004;86:155-9. https://doi.org/10.1016/j.foodchem.2003.11.003
  49. Li W, Fitzloff JF. HPLC analysis of ginsenosides in the roots of Asian ginseng (Panax ginseng) and North American ginseng (Panax quinquefolius) with inline photodiode array and evaporative light scattering detection. J Liq Chromatogr R T 2006;25:29-41.
  50. Ma X, Xiao H, Liang X. Identification of ginsenosides in Panax quinquefolium by LC-MS. Chromatographia 2006;64:31-6. https://doi.org/10.1365/s10337-006-0812-z
  51. Leung KSY, Chan K, Bensoussan A, Munroe MJ. Application of atmospheric pressure chemical ionisation mass spectrometry in the identification and differentiation of Panax Species. Phytochem Analysis 2007;18:146-50. https://doi.org/10.1002/pca.962
  52. Li L, Tsao R, Dou J, Song F, Liu Z, Liu S. Detection of saponins in extract of Panax notoginseng by liquid chromatography-electrospray ionisation-mass spectrometry. Anal Chim Acta 2005;536:21-8. https://doi.org/10.1016/j.aca.2004.12.064
  53. Chan EC, Yap SL, Lau AJ, Leow PC, Toh DF, Koh HL. Ultra-performance liquid chromatography/time-of-flight mass spectrometry based metabolomics of raw and steamed Panax notoginseng. Rapid Commun Mass Spectrom 2007;21:519-28. https://doi.org/10.1002/rcm.2864
  54. Lai CJ, Tan T, Zeng SL, Qi LW, Liu XG, Dong X, Li P, Liu EH. An integrated high resolution mass spectrometric data acquisition method for rapid screening of saponins in Panax notoginseng (Sanqi). J Pharm Biomed Anal 2015;109:184-91. https://doi.org/10.1016/j.jpba.2015.02.028
  55. Qiu S, Yang WZ, Shi XJ, Yao CL, Yang M, Liu X, Jiang BH, Wu WY, Guo DA. A green protocol for efficient discovery of novel natural compounds: characterization of new ginsenosides from the stems and leaves of Panax ginseng as a case study. Anal Chim Acta 2015;893:65-76. https://doi.org/10.1016/j.aca.2015.08.048
  56. Xing Q, Liang T, Shen G, Wang X, Jin Y, Liang X. Comprehensive HILIC x RPLC with mass spectrometry detection for the analysis of saponins in Panax notoginseng. Analyst 2012;137:2239-49. https://doi.org/10.1039/c2an16078a
  57. Lelu JK, Liu Q, Alolga RN, Fan Y, Xiao WL, Qi LW, Li P. A new two-dimensional chromatographic method for separation of saponins from steamed Panax notoginseng. J Pharm Biomed Anal 2016;125:355-9. https://doi.org/10.1016/j.jpba.2016.04.019
  58. Liu W, He Y, Li L, Liu S. Fast quantitative analysis of ginsenosides in Asian ginseng (Panax ginseng C. A. Mayer) by using solid-phase methylation coupled to direct analysis in real time. Rapid Commun Mass Spectrom 2016;30(Suppl 1):111-5. https://doi.org/10.1002/rcm.7627
  59. Wang Y, Li C, Huang L, Liu L, Guo Y, Ma L, Liu S. Rapid identification of traditional Chinese herbal medicine by direct analysis in real time (DART) mass spectrometry. Anal Chim Acta 2014;845:70-6. https://doi.org/10.1016/j.aca.2014.06.014
  60. Zeng S, Wang L, Chen T, Qu H. On-line coupling of macroporous resin column chromatography with direct analysis in real time mass spectrometry utilizing a surface flowing mode sample holder. Anal Chim Acta 2014;811:43-50. https://doi.org/10.1016/j.aca.2013.12.014
  61. Qi X, Ignatova S, Luo G, Liang Q, Jun FW, Wang Y, Sutherland I. Preparative isolation and purification of ginsenosides Rf, Re, Rd and Rb1 from the roots of Panax ginseng with a salt/containing solvent system and flow step-gradient by high performance counter-current chromatography coupled with an evaporative light scattering detector. J Chromatogr A 2010;1217:1995-2001. https://doi.org/10.1016/j.chroma.2010.01.057
  62. Ha YW, Lim SS, Ha IJ, Na YC, Seo JJ, Shin H, Son SH, Kim YS. Preparative isolation of four ginsenosides from Korean red ginseng (steam-treated Panax ginseng C. A. Meyer), by high-speed counter-current chromatography coupled with evaporative light scattering detection. J Chromatogr A 2007;1151:37-44. https://doi.org/10.1016/j.chroma.2007.01.038
  63. Glockl I, Veit M, Blaschke G. Determination of ginsenosides from Panax ginseng using micellar electrokinetic chromatography. Planta Medica 2002;68:158-61. https://doi.org/10.1055/s-2002-20241
  64. Ji W, Xie H, Zhou J, Wang X, Ma X, Huang L. Water-compatible molecularly imprinted polymers for selective solid phase extraction of dencichine from the aqueous extract of Panax notoginseng. J Chromatogr B Analyt Technol Biomed Life Sci 2016;1008:225-33. https://doi.org/10.1016/j.jchromb.2015.11.053
  65. Nguyen HT, Lee DK, Choi YG, Min JE, Yoon SJ, Yu YH, Lim J, Lee J, Kwon SW, Park JH. A 1H NMR-based metabolomics approach to evaluate the geographical authenticity of herbal medicine and its application in building a model effectively assessing the mixing proportion of intentional admixtures: a case study of Panax ginseng: metabolomics for the authenticity of herbal medicine. J Pharm Biomed Anal 2016;124:120-8. https://doi.org/10.1016/j.jpba.2016.02.028
  66. Wang YS, Jin YP, Gao W, Xiao SY, Zhang YW, Zheng PH, Wang J, Liu JX, Sun CH, Wang YP. Complete 1H-NMR and 13C-NMR spectral assignment of five malonyl ginsenosides from the fresh flower buds of Panax ginseng. J Ginseng Res 2016;40:245-50. https://doi.org/10.1016/j.jgr.2015.08.003
  67. Joo KM, Park CW, Jeong HJ, Lee SJ, Chang IS. Simultaneous determination of two Amadori compounds in Korean red ginseng (Panax ginseng) extracts and rat plasma by high-performance anion-exchange chromatography with pulsed amperometric detection. J Chromatogr B Analyt Technol Biomed Life Sci 2008;865:159-66. https://doi.org/10.1016/j.jchromb.2008.02.012
  68. Yoon SR, Nah JJ, Kim SK, Kim SC, Nam KY, Jung DW, Nah SY. Determination of ginsenoside Rf and Rg2 from Panax ginseng using enzyme immunoassy. Chem Pharm Bull 1997;46:1144-7. https://doi.org/10.1248/cpb.46.1144
  69. Qiao CF, Liu XM, Cui XM, Hu DJ, Chen YW, Zhao J, Li SP. High-performance anion-exchange chromatography coupled with diode array detection for the determination of dencichine in Panax notoginseng and related species. J Sep Sci 2013;36:2401-6. https://doi.org/10.1002/jssc.201300334
  70. Yang WZ, Bo T, Ji S, Qiao X, Guo DA, Ye M. Rapid chemical profiling of saponins in the flower buds of Panax notoginseng by integrating MCI gel column chromatography and liquid chromatography/mass spectrometry analysis. Food Chem 2013;139:762-9. https://doi.org/10.1016/j.foodchem.2013.01.051
  71. Zhu J, Fan X, Cheng Y, Agarwal R, Moore CM, Chen ST, Tong W. Chemometric analysis for identification of botanical raw materials for pharmaceutical use: a case study using Panax notoginseng. PLoS One 2014;9:e87462. https://doi.org/10.1371/journal.pone.0087462
  72. Toh DF, New LS, Koh HL, Chan EC. Ultra-high performance liquid chromatography/time-of-flight mass spectrometry (UHPLC/TOFMS) for timedependent profiling of raw and steamed Panax notoginseng. J Pharm Biomed Anal 2010;52:43-50. https://doi.org/10.1016/j.jpba.2009.12.005
  73. Lee SA, Jo HK, Im BO, Kim S, Whang WK, Ko SK. Changes in the contents of prosapogenin in the red ginseng (Panax ginseng) depending on steaming batches. J Ginseng Res 2012;36:102-6. https://doi.org/10.5142/jgr.2012.36.1.102
  74. Sun BS, Xu MY, Li Z, Wang YB, Sung CK. UPLC-Q-TOF-MS/MS analysis for steaming times-dependent profiling of steamed Panax quinquefolius and its ginsenosides transformations induced by repetitious steaming. J Ginseng Res 2012;36:277-90. https://doi.org/10.5142/jgr.2012.36.3.277
  75. Sun BS, Pan FY, Sung CK. Repetitious steaming-induced chemical transformations and global quality of black ginseng derived from Panax ginseng by HPLC-ESI-MS/MSn based chemical profiling approach. Biotechnol Bioproc E 2011;16:956-65. https://doi.org/10.1007/s12257-011-0079-6
  76. Abd El-Aty AM, Kim IK, Kim MR, Lee C, Shim JH. Determination of volatile organic compounds generated from fresh, white and red Panax ginseng (C. A. Meyer) using a direct sample injection technique. Biomed Chromatogr 2008;22:556-62. https://doi.org/10.1002/bmc.969
  77. Kim SN, Ha YW, Shin H, Son SH, Wu SJ, Kim YS. Simultaneous quantification of 14 ginsenosides in Panax ginseng C.A. Meyer (Korean red ginseng) by HPLC-ELSD and its application to quality control. J Pharm Biomed Anal 2007;45:164-70. https://doi.org/10.1016/j.jpba.2007.05.001
  78. Sun BS, Gu LJ, Fang ZM, Wang CY, Wang Z, Lee MR, Li Z, Li JJ, Sung CK. Simultaneous quantification of 19 ginsenosides in black ginseng developed from Panax ginseng by HPLC-ELSD. J Pharm Biomed Anal 2009;50:15-22. https://doi.org/10.1016/j.jpba.2009.03.025
  79. Sun S, Wang CZ, Tong R, Li XL, Fishbein A, Wang Q, He TC, Du W, Yuan CS. Effects of steaming the root of Panax notoginseng on chemical composition and anticancer activities. Food Chem 2010;118:307-14. https://doi.org/10.1016/j.foodchem.2009.04.122
  80. Zhang YC, Pi ZF, Liu CM, Song FR, Liu ZQ, Liu SY. Analysis of low-polar ginsenosides in steamed Panax ginseng at high-temperature by HPLC-ESI-MS/MS. Chem Res Chinese U 2012;28:31-6.
  81. Huang X, Liu Y, Zhang Y, Li SP, Yue H, Chen CB, Liu SY. Multicomponent assessment and ginsenoside conversions of Panax quinquefolium L. roots before and after steaming by HPLC-MS(n). J Ginseng Res 2019;43:27-37. https://doi.org/10.1016/j.jgr.2017.08.001
  82. Castro-Aceituno V, Ahn S, Simu SY, Singh P, Mathiyalagan R, Lee HA, Yang DC. Anticancer activity of silver nanoparticles from Panax ginseng fresh leaves in human cancer cells. Biomed Pharmacother 2016;84:158-65. https://doi.org/10.1016/j.biopha.2016.09.016
  83. Park KS, Ko SK, Chung SH. Comparisons of antidiabetic effect between ginseng radix alba, ginseng radix rubra and Panax quinquefolium radix in MLD STZ-induced diabetic rats. J Ginseng Res 2003;27:56-61. https://doi.org/10.5142/JGR.2003.27.2.056
  84. Darshan S, Doreswamy R. Patented antiinflammatory plant drug development from traditional medicine. Phytother Res 2004;18:343-57. https://doi.org/10.1002/ptr.1475
  85. Chen Z, Lu T, Yue X, Wei N, Jiang Y, Chen M, Ni G, Liu X, Xu G. Neuroprotective effect of ginsenoside Rb1 on glutamate-induced neurotoxicity: with emphasis on autophagy. Neurosci Lett 2010;482:264-8. https://doi.org/10.1016/j.neulet.2010.07.052
  86. Ng TB. Pharmacological activity of sanchi ginseng (Panax notoginseng). J Pharm Pharmacol 2006;58:1007-19. https://doi.org/10.1211/jpp.58.8.0001
  87. Yang WZ, Ye M, Qiao X, Liu CF, Miao WJ, Bo T, Tao HY, Guo DA. A strategy for efficient discovery of new natural compounds by integrating orthogonal column chromatography and liquid chromatography/mass spectrometry analysis: its application in Panax ginseng, Panax quinquefolium and Panax notoginseng to characterize 437 potential new ginsenosides. Anal Chim Acta 2012;739:56-66. https://doi.org/10.1016/j.aca.2012.06.017
  88. Chan TWD, But PPH, Cheng SW, Kwok IMY, Lau FW, Xu HX. Differentiation and authentication of Panax ginseng, Panax quinquefolius, and ginseng products by using HPLC/MS. Anal Chem 2000;72:1281-7. https://doi.org/10.1021/ac990819z
  89. Li W, Gu C, Zhang H, Awang DVC, Fitzloff JF, Fong HHS, Breemen RBV. Use of high-performance liquid chromatography-tandem mass spectrometry to distinguish Panax ginseng. Anal Chem 2000;72:5417-22. https://doi.org/10.1021/ac000650l
  90. Li W, Fitzloff JF. HPLC with evaporative light scattering detection as a tool to distinguish Asian ginseng (Panax ginseng) and North American ginseng (Panax quinquefolius). J Liq Chromatogr R T 2006;25:17-27.
  91. Yang W, Qiao X, Li K, Fan J, Bo T, Guo DA, Ye M. Identification and differentiation of Panax ginseng, Panax quinquefolium, and Panax notoginseng by monitoring multiple diagnostic chemical markers. Acta Pharm Sin B 2016;6: 568-75. https://doi.org/10.1016/j.apsb.2016.05.005
  92. Wang T, Guo R, Zhou G, Zhou X, Kou Z, Sui F, Li C, Tang L, Wang Z. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: a review. J Ethnopharmacol 2016;188:234-58. https://doi.org/10.1016/j.jep.2016.05.005
  93. Huang X, Liu Y, Zhang N, Sun X, Yue H, Chen C, Liu S. UPLC Orbitrap HRMS Analysis of Panax quinquefolium L. for authentication of Panax genus with chemometric methods. J Chromatogr Sci 2018;56:25-35. https://doi.org/10.1093/chromsci/bmx077
  94. Wan JB, Li SP, Chen JM, Wang YT. Chemical characteristics of three medicinal plants of the Panax genus determined by HPLC-ELSD. J Sep Sci 2007;30:825-32. https://doi.org/10.1002/jssc.200600359
  95. Gurung B, Bhardwaj PK, Rai AK, Sahoo D. Major ginsenoside contents in rhizomes of Panax sokpayensis and Panax bipinnatifidus. Nat Prod Res 2018;32:234-8. https://doi.org/10.1080/14786419.2017.1343322
  96. Yunusova N, Kim JY, Lee GJ, Hong JY, Shin BK, Cai SQ, Piao XL, Park JH, Kwon SW. Comparison of ginsenosides in radix and rhizome of wild Panax species using LC-ELSD and LC-Q-TOF-MS. Int J Food Sci Tech 2015;50:1607-14. https://doi.org/10.1111/ijfs.12814
  97. Xia P, Bai Z, Liang T, Yang D, Liang Z, Yan X, Liu Y. High-performance liquid chromatography based chemical fingerprint analysis and chemometric approaches for the identification and distinction of three endangered Panax plants in Southeast Asia. J Sep Sci 2016;39:3880-8. https://doi.org/10.1002/jssc.201600460
  98. Xie G, Plumb R, Su M, Xu Z, Zhao A, Qiu M, Long X, Liu Z, Jia W. Ultra-performance LC/TOF MS analysis of medicinal Panax herbs for metabolomic research. J Sep Sci 2008;31:1015-26. https://doi.org/10.1002/jssc.200700650
  99. Park HW, In G, Kim JH, Cho BG, Han GH, Chang IM. Metabolomic approach for discrimination of processed ginseng genus (Panax ginseng and Panax quinquefolius) using UPLC-QTOF MS. J Ginseng Res 2014;38:59-65. https://doi.org/10.1016/j.jgr.2013.11.011
  100. Yang SO, Lee SW, Kim YO, Sohn SH, Kim YC, Hyun DY, Hong YP, Shin YS. HPLC-based metabolic profiling and quality control of leaves of different Panax species. J Ginseng Res 2013;37:248-53. https://doi.org/10.5142/jgr.2013.37.248
  101. Lee SM, Lee HB, Lee CG. A convenience UPLC/PDA method for the quantitative analysis of panaxfuraynes A and B from Panax ginseng. Food Chem 2010;123:955-8. https://doi.org/10.1016/j.foodchem.2010.05.002
  102. Shi W, Wang Y, Li J, Zhang H, Ding L. Investigation of ginsenosides in different parts and ages of Panax ginseng. Food Chem 2007;102:664-8. https://doi.org/10.1016/j.foodchem.2006.05.053
  103. Liang Z, Chen Y, Xu L, Qin M, Yi T, Chen H, Zhao Z. Localization of ginsenosides in the rhizome and root of Panax ginseng by laser microdissection and liquid chromatography-quadrupole/time of flight-mass spectrometry. J Pharm Biomed Anal 2015;105:121-33. https://doi.org/10.1016/j.jpba.2014.12.005
  104. Qu C, Bai Y, Jin X, Wang Y, Zhang K, You J, Zhang H. Study on ginsenosides in different parts and ages of Panax quinquefolius L. Food Chem 2009;115: 340-6. https://doi.org/10.1016/j.foodchem.2008.11.079
  105. Zhang X, Ma X, Si B, Zhao Y. Simultaneous determination of five active hydrolysis ingredients from Panax quinquefolium L. by HPLC-ELSD. Biomed Chromatogr 2011;25:646-51. https://doi.org/10.1002/bmc.1495
  106. Liu J, Liu Y, Wang Y, Abozeid A, Zu YG, Tang ZH. The integration of GC-MS and LC-MS to assay the metabolomics profiling in Panax ginseng and Panax quinquefolius reveals a tissue- and species-specific connectivity of primary metabolites and ginsenosides accumulation. J Pharm Biomed Anal 2017;135:176-85. https://doi.org/10.1016/j.jpba.2016.12.026
  107. Jia XH, Wang CQ, Liu JH, Li XW, Wang X, Shang MY, Cai SQ, Zhu S, Komatsu K. Comparative studies of saponins in 1-3-year-old main roots, fibrous roots, and rhizomes of Panax notoginseng, and identification of different parts and growth-year samples. J Nat Med 2013;67:339-49. https://doi.org/10.1007/s11418-012-0691-6
  108. Wan JB, Yang FQ, Li SP, Wang YT, Cui XM. Chemical characteristics for different parts of Panax notoginseng using pressurized liquid extraction and HPLC-ELSD. J Pharm Biomed Anal 2006;41:1596-601. https://doi.org/10.1016/j.jpba.2006.01.058
  109. Wang Z, Chen YY, Pan HJ, Wei L, Wang YH, Zeng CH. Saponin accumulation in flower buds of Panax notoginseng. Chinese Herbal Medicines 2015;7:179-84. https://doi.org/10.1016/s1674-6384(15)60036-3
  110. Wang CZ, Ni M, Sun S, Li XL, He H, Mehendale SR, Yuan CS. Detection of adulteration of notoginseng root extract with other panax species by quantitative HPLC coupled with PCA. J Agric Food Chem 2009;57:2363-7. https://doi.org/10.1021/jf803320d
  111. Wan JB, Zhang QW, Hong SJ, Li P, Li SP, Wang YT. Chemical investigation of saponins in different parts of Panax notoginseng by pressurized liquid extraction and liquid chromatography-electrospray ionization-tandem mass spectrometry. Molecules 2012;17:5836-53. https://doi.org/10.3390/molecules17055836
  112. Dan M, Su M, Gao X, Zhao T, Zhao A, Xie G, Qiu Y, Zhou M, Liu Z, Jia W. Metabolite profiling of Panax notoginseng using UPLC-ESI-MS. Phytochemistry 2008;69:2237-44. https://doi.org/10.1016/j.phytochem.2008.04.015
  113. Chen J, Xie M, Fu Z, Lee FSC, Wang X. Development of a quality evaluation system for Panax quinquefolium. L based on HPLC chromatographic fingerprinting of seven major ginsenosides. Microchem J 2007;85:201-8. https://doi.org/10.1016/j.microc.2006.05.007
  114. Lim W, Mudge KW, Vermeylen F. Effects of population, age, and cultivation methods on ginsenoside content of wild American ginseng (Panax quinquefolium). J Agric Food Chem 2005;53:8498-505. https://doi.org/10.1021/jf051070y
  115. Yang Z, Zhu J, Zhang H, Fan X. Investigating chemical features of Panax notoginseng based on integrating HPLC fingerprinting and determination of multiconstituents by single reference standard. J Ginseng Res 2018;42: 334-42. https://doi.org/10.1016/j.jgr.2017.04.005
  116. Kim N, Kim K, Lee D, Shin YS, Bang KH, Cha SW, Lee JW, Choi HK, Hwang BY, Lee D. Nontargeted metabolomics approach for age differentiation and structure interpretation of age-dependent key constituents in hairy roots of Panax ginseng. J Nat Prod 2012;75:1777-84. https://doi.org/10.1021/np300499p
  117. Kim N, Kim K, Choi BY, Lee D, Shin YS, Bang KH, Cha SW, Lee JW, Choi HK, Jang DS, et al. Metabolomic approach for age discrimination of Panax ginseng using UPLC-Q-Tof MS. J Agric Food Chem 2011;59:10435-41. https://doi.org/10.1021/jf201718r
  118. Wang Y, Pan JY, Xiao XY, Lin RC, Cheng YY. Simultaneous determination of ginsenosides in Panax ginseng with different growth ages using highperformance liquid chromatography-mass spectrometry. Phytochem Analysis 2006;17:424-30. https://doi.org/10.1002/pca.944
  119. Li L, Sheng Y, Zhang J, Guo D. Determination of four active saponins of Panax notoginseng in rat feces by high-performance liquid chromatography. J Chromatogr Sci 2005;43:421-5. https://doi.org/10.1093/chromsci/43.8.421
  120. Guo Q, Li P, Wang Z, Cheng Y, Wu H, Yang B, Du S, Lu Y. Brain distribution pharmacokinetics and integrated pharmacokinetics of Panax Notoginsenoside R1, ginsenosides Rg1, Rb1, Re and Rd in rats after intranasal administration of Panax notoginseng saponins assessed by UPLC/MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2014;969:264-71. https://doi.org/10.1016/j.jchromb.2014.08.034
  121. Lin H, Pi Z, Men L, Chen W, Liu Z, Liu Z. Urinary metabonomic study of Panax ginseng in deficiency of vital energy rat using ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Ethnopharmacol 2016;184:10-7. https://doi.org/10.1016/j.jep.2016.02.031
  122. Dong WW, Zhao J, Zhong FL, Zhu WJ, Jiang J, Wu S, Yang DC, Li D, Quan LH. Biotransformation of Panax ginseng extract by rat intestinal microflora: identification and quantification of metabolites using liquid chromatography-tandem mass spectrometry. J Ginseng Res 2017;41: 540-7. https://doi.org/10.1016/j.jgr.2016.11.002
  123. Matsuda H, Yamazaki M, Asanuma Y, Kubo M. Promotion of hair growth by ginseng radix on cultured mouse vibrissal hair follicles. Phytother Res 2003;17:797-800. https://doi.org/10.1002/ptr.1241
  124. Murata K, Takeshita F, Samukawa K, Tani T, Matsuda H. Effects of ginseng rhizome and ginsenoside Ro on testosterone 5a-reductase and hair regrowth in testosterone-treated mice. Phytother Res 2012;26:48-53. https://doi.org/10.1002/ptr.3511
  125. Assinewe VA, Baum BR, Gagnon D, Arnason JT. Phytochemistry of wild populations of Panax quinquefolius L. (North American ginseng). J Agric Food Chem 2003;51:4549-53. https://doi.org/10.1021/jf030042h
  126. Corbit RM, Ferreira JF, Ebbs SD, Murphy LL. Simplified extraction of ginsenosides from American ginseng (Panax quinquefolius L.) for high-performance liquid chromatography-ultraviolet analysis. J Agric Food Chem 2005;53:9867-73. https://doi.org/10.1021/jf051504p
  127. Li L, Zhang JL, Sheng YX, Ye G, Guo HZ, Guo DA. Liquid chromatographic method for determination of four active saponins from Panax notoginseng in rat urine using solid-phase extraction. J Chromatogr B Analyt Technol Biomed Life Sci 2004;808:177-83. https://doi.org/10.1016/j.jchromb.2004.05.002
  128. Wan J-B, Li P, Li S, Wang Y, Dong TTX, Tsim KWK. Simultaneous determination of 11 saponins in Panax notoginseng using HPLC-ELSD and pressurized liquid extraction. J Sep Sci 2006;29:2190-6. https://doi.org/10.1002/jssc.200600103
  129. Zhang Y, Zhang J, Liu C, Yu M, Li S. Extraction, isolation, and aromatase inhibitory evaluation of low-polar ginsenosides from Panax ginseng leaves. J Chromatogr A 2017;1483:20-9. https://doi.org/10.1016/j.chroma.2016.12.068
  130. Lee KS, Kim GH, Kim HH, Chang YI, Lee GH. Volatile compounds of Panax ginseng C.A. Meyer cultured with different cultivation methods. J Food Sci 2012;77:C805-10. https://doi.org/10.1111/j.1750-3841.2012.02765.x
  131. Yoon SH, Nam YM, Hong JT, Kim SJ, Ko SK. Modification of ginsenoside composition in red ginseng (Panax ginseng) by ultrasonication. J Ginseng Res 2016;40:300-3. https://doi.org/10.1016/j.jgr.2015.09.001
  132. Smith RG, Caswell D, Carriere A, Zielke B. Variation in the ginsenoside content of American ginseng, Panax quinquefolius L, roots. Can J Bot 1996;74: 1616-20. https://doi.org/10.1139/b96-195
  133. Li L, Sheng Y, Zhang J, Wang C, Guo D. HPLC determination of four active saponins from Panax notoginseng in rat serum and its application to pharmacokinetic studies. Biomed Chromatogr 2004;18:849-56. https://doi.org/10.1002/bmc.400
  134. Schulten HRSF. Identification of ginsenosides from Panax ginseng in fractions obtained by high-performance liquid chromatography by field desorption mass spectrometry, multiple internal reflection infrared spectroscopy and thin-layer chromatography. J Chromatogr A 1981;212:37-49. https://doi.org/10.1016/S0021-9673(00)80545-2
  135. Du Z, Li J, Zhang X, Pei J, Huang L. An Integrated LC-MS-based strategy for the quality assessment and discrimination of three Panax species. Molecules 2018;23.
  136. Zhang Y, Liu C, Qi Y, Li S, Wang J. Application of accelerated solvent extraction coupled with counter-current chromatography to extraction and online isolation of saponins with a broad range of polarity from Panax notoginseng. Sep Purif Technol 2013;106:82-9. https://doi.org/10.1016/j.seppur.2012.12.031
  137. Haibo B, Lixing N, Dan W, Shaoxiong Y, Shan L, Zhiyong G, Xiaojia X, Gangli W, Xiangri L. Rapid determination of Panax ginseng by near-infrared spectroscopy. Anal Methods 2013;5.
  138. Jiang C, Qu H. A comparative study of using in-line near-infrared spectra, ultraviolet spectra and fused spectra to monitor Panax notoginseng adsorption process. J Pharm Biomed Anal 2015;102:78-84. https://doi.org/10.1016/j.jpba.2014.08.029
  139. Liu JH, Lee CS, Leung KM, Yan ZK, Shen BH, Zhao ZZ, Jiang ZH. Quantification of two polyacetylenes in radix ginseng and roots of related Panax species using a gas chromatography-mass spectrometric method. J Agr Food Chem 2007;55:8830-5. https://doi.org/10.1021/jf070735o
  140. Chen XJ, Qiu JF, Wang YT, Wan JB. Discrimination of three Panax species based on differences in volatile organic compounds using a static headspace GC-MS-based metabolomics approach. Am J Chin Med 2016;44:663-76. https://doi.org/10.1142/S0192415X16500361
  141. Bonfill M, Casals I, Palazon J, Mallol A, Morales C. Improved high performance liquid chromatographic determination of ginsenosides in Panax ginseng-based pharmaceuticals using a diol column. Biomed Chromatogr 2002;16:68-72. https://doi.org/10.1002/bmc.120
  142. Li CY, Lau DT, Dong TT, Zhang J, Choi RC, Wu HQ, Wang LY, Hong RS, Li SH, Song X, et al. Dual-index evaluation of character changes in Panax ginseng C. A. Mey stored in different conditions. J Agr Food Chem 2013;61:6568-73. https://doi.org/10.1021/jf400456w
  143. Liu Z, Wang CZ, Zhu XY, Wan JY, Zhang J, Li W, Ruan CC, Yuan CS. Dynamic changes in neutral and acidic ginsenosides with different cultivation ages and harvest seasons: identification of chemical characteristics for Panax ginseng quality control. Molecules 2017;22.
  144. Liu Z, Li Y, Li X, Ruan CC, Wang LJ, Sun GZ. The effects of dynamic changes of malonyl ginsenosides on evaluation and quality control of Panax ginseng C. A. Meyer. J Pharm Biomed Anal 2012;64-65:56-63. https://doi.org/10.1016/j.jpba.2012.02.005
  145. Chung IM, Kim JW, Seguin P, Jun YM, Kim SH. Ginsenosides and phenolics in fresh and processed Korean ginseng (Panax ginseng C.A. Meyer): effects of cultivation location, year, and storage period. Food Chem 2012;130:73-83. https://doi.org/10.1016/j.foodchem.2011.06.056
  146. Wang AB, Wang CZ, Wu JA, Osinski J, Yuan CS. Determination of major ginsenosides in Panax quinquefolius (American ginseng) using, highperformance liquid chromatography. Phytochem Analysis 2005;16:272-7. https://doi.org/10.1002/pca.838
  147. Schlag EM, McIntosh MS. Ginsenoside content and variation among and within American ginseng (Panax quinquefolius L.) populations. Phytochemistry 2006;67:1510-9. https://doi.org/10.1016/j.phytochem.2006.05.028
  148. Yao H, Li X, Liu Y, Wu Q, Jin Y. An optimized microwave-assisted extraction method for increasing yields of rare ginsenosides from Panax quinquefolius L. J Ginseng Res 2016;40:415-22. https://doi.org/10.1016/j.jgr.2016.06.007
  149. Li L, Sheng YX, Zhang JL, Wang SS, Guo DA. High-performance liquid chromatographic assay for the active saponins from Panax notoginseng in rat tissues. Biomed Chromatogr 2006;20:327-35. https://doi.org/10.1002/bmc.567
  150. Gao X, Dan M, Zhao A, Xie G, Jia W. Simultaneous determination of saponins in flower buds of Panax notoginseng using high performance liquid chromatography. Biomed Chromatogr 2008;22:244-9. https://doi.org/10.1002/bmc.915
  151. Liu X, Qiu Z, Wang L, Chen Y. Quality evaluation of Panax notoginseng extract dried by different drying methods. Food Bioprod Proc 2011;89:10-4. https://doi.org/10.1016/j.fbp.2010.03.008
  152. Wang D, Liao PY, Zhu HT, Chen KK, Xu M, Zhang YJ, Yang CR. The processing of Panax notoginseng and the transformation of its saponin components. Food Chem 2012;132:1808-13. https://doi.org/10.1016/j.foodchem.2011.12.010
  153. Li SP, Qiao CF, Chen YW, Zhao J, Cui XM, Zhang QW, Liu XM, Hu DJ. A novel strategy with standardized reference extract qualification and single compound quantitative evaluation for quality control of Panax notoginseng used as a functional food. J Chromatogr A 2013;1313:302-7. https://doi.org/10.1016/j.chroma.2013.07.025
  154. Gong X, Chen H, Pan J, Qu H. Optimization of Panax notoginseng extraction process using a design space approach. Sep Purif Technol 2015;141:197-206. https://doi.org/10.1016/j.seppur.2014.11.020
  155. Xia P, Guo H, Ru M, Yang D, Liang Z, Yan X, Liu Y. Accumulation of saponins in Panax notoginseng during its growing seasons. Ind Crop Prod 2017;104: 287-92. https://doi.org/10.1016/j.indcrop.2017.04.045
  156. Dong TT, Zhao KJ, Huang WZ, Leung KW, Tsim KW. Orthogonal array design in optimizing the extraction efficiency of active constituents from roots of Panax notoginseng. Phytother Res 2005;19:684-8. https://doi.org/10.1002/ptr.1728
  157. Bae HJ, Chung SI, Lee SC, Kang MY. Influence of aging process on the bioactive components and antioxidant activity of ginseng (Panax ginseng L.). J Food Sci 2014;79:H2127-31. https://doi.org/10.1111/1750-3841.12640
  158. Du X, Zhao Y, Yang D, Liu Y, Fan K, Liang Z, Han R. A correlation model of UPLC fingerprints and anticoagulant activity for quality assessment of Panax notoginseng by hierarchical clustering analysis and multiple linear regression analysis. Anal Methods 2015;7:2985-92. https://doi.org/10.1039/C4AY02277G
  159. Shan SM, Luo JG, Huang F, Kong LY. Chemical characteristics combined with bioactivity for comprehensive evaluation of Panax ginseng C.A. Meyer in different ages and seasons based on HPLC-DAD and chemometric methods. J Pharm Biomed Anal 2014;89:76-82. https://doi.org/10.1016/j.jpba.2013.10.030
  160. Wang YH, Hong CY, Chen CF, Tsai TH. Reversed-phase high-performance liquid chromatography determination of ginsenosides of Panax quinquefolium. J Liq Chromatogr Re T 1996;19:2497-503. https://doi.org/10.1080/10826079608014032
  161. Christensen LP, Jensen M, Kidmose U. Simultaneous determination of ginsenosides and polyacetylenes in American ginseng root (Panax quinquefolium L.) by high-performance liquid chromatography. J Agr Food Chem 2006;54: 8995-9003. https://doi.org/10.1021/jf062068p
  162. Lau AJ, Seo BH, Woo SO, Koh HL. High-performance liquid chromatographic method with quantitative comparisons of whole chromatograms of raw and steamed Panax notoginseng. J Chromatogr A 2004;1057:141-9. https://doi.org/10.1016/j.chroma.2004.09.069
  163. Chen T, Gong X, Chen H, Qu H. Process development for the decoloration of Panax notoginseng extracts: a design space approach. J Sep Sci 2015;38: 346-55. https://doi.org/10.1002/jssc.201400808
  164. Zhang HZ, Liu DH, Zhang DK, Wang YH, Li G, Yan GL, Cao LJ, Xiao XH, Huang LQ, Wang JB. Quality assessment of Panax notoginseng from different regions through the analysis of marker chemicals, biological potency and ecological factors. PLoS One 2016;11:e0164384. https://doi.org/10.1371/journal.pone.0164384
  165. Guan J, Lai CM, Li SP. A rapid method for the simultaneous determination of 11 saponins in Panax notoginseng using ultra performance liquid chromatography. J Pharm Biomed Anal 2007;44:996-1000. https://doi.org/10.1016/j.jpba.2007.03.032
  166. Chen T, Gong X, Chen H, Zhang Y, Qu H. Chromatographic elution process design space development for the purification of saponins in Panax notoginseng extract using a probability-based approach. J Sep Sci 2016;39: 306-15. https://doi.org/10.1002/jssc.201500976
  167. Xie RF, Yang BR, Cheng PP, Wu S, Li ZC, Tang JY, Li S, Tang N, Lee SMY, Wang YH, et al. Study on the HPLC chromatograms and pro-angiogenesis activities of the flowers of Panax notoginseng. J Liq Chromatogr R T 2015;38:1286-95. https://doi.org/10.1080/10826076.2015.1037451
  168. Kim D, Kim M, Rana GS, Han J. Seasonal variation and possible biosynthetic pathway of ginsenosides in Korean Ginseng Panax ginseng Meyer. Molecules 2018;23.
  169. Lee DY, Cho JG, Lee MK, Lee JW, Lee YH, Yang DC, Baek NI. Discrimination of Panax ginseng roots cultivated in different areas in Korea using HPLC-ELSD and principal component analysis. J Ginseng Res 2011;35:31-8. https://doi.org/10.5142/jgr.2011.35.1.031
  170. Li WK, Fitzloff JF. A validated method for quantitative determination of saponins in notoginseng (Panax notoginseng) using high-performance liquid chromatography with evaporative light-scattering detection. J Pharm Pharmacol 2001;53:1637-43. https://doi.org/10.1211/0022357011778241
  171. Koh E, Jang OH, Hwang KH, An YN, Moon B. Effects of steaming and airdrying on ginsenoside composition of Korean ginseng (Panax ginseng C.A. Meyer). J Food Process Pres 2015;39:207-13. https://doi.org/10.1111/jfpp.12412
  172. Dong WW, Han XZ, Zhao J, Zhong FL, Ma R, Wu S, Li D, Quan LH, Jiang J. Metabolite profiling of ginsenosides in rat plasma, urine and feces by LC-MS/MS and its application to a pharmacokinetic study after oral administration of Panax ginseng extract. Biomed Chromatogr 2018;32.
  173. Song Y, Zhang N, Shi S, Li J, Zhao Y, Zhang Q, Jiang Y, Tu P. Homolog-focused profiling of ginsenosides based on the integration of step-wise formate anion-to-deprotonated ion transition screening and scheduled multiple reaction monitoring. J Chromatogr A 2015;1406:136-44. https://doi.org/10.1016/j.chroma.2015.06.007
  174. Stavrianidi A, Stekolshchikova E, Porotova A, Rodin I, Shpigun O. Combination of HPLC-MS and QAMS as a new analytical approach for determination of saponins in ginseng containing products. J Pharm Biomed Anal 2017;132: 87-92. https://doi.org/10.1016/j.jpba.2016.09.041
  175. Ye J, Gao Y, Tian S, Su J, Zhang W. A novel and effective mode-switching triple quadrupole mass spectrometric approach for simultaneous quantification of fifteen ginsenosides in Panax ginseng. Phytomedicine 2018;44:164-72. https://doi.org/10.1016/j.phymed.2018.02.007
  176. Xia YG, Song Y, Liang J, Guo XD, Yang BY, Kuang HX. Quality analysis of American ginseng cultivated in Heilongjiang using UPLC-ESI(-)-MRM-MS with chemometric methods. Molecules 2018;23.
  177. Chen W, Dang Y, Zhu C. Simultaneous determination of three major bioactive saponins of Panax notoginseng using liquid chromatography-tandem mass spectrometry and a pharmacokinetic study. Chin Med-Uk 2010;5:12. https://doi.org/10.1186/1749-8546-5-12
  178. Feng H, Chen W, Zhu C. Pharmacokinetics study of bio-adhesive tablet of Panax notoginseng saponins. Int Arch Med 2011;4:18. https://doi.org/10.1186/1755-7682-4-18
  179. Zhou L, Xing R, Xie L, Rao T, Wang Q, Ye W, Fu H, Xiao J, Shao Y, Kang D, et al. Development and validation of an UFLC-MS/MS assay for the absolute quantitation of nine notoginsenosides in rat plasma: application to the pharmacokinetic study of Panax Notoginseng Extract. J Chromatogr B Analyt Technol Biomed Life Sci 2015;995-996:46-53. https://doi.org/10.1016/j.jchromb.2015.05.022
  180. Lai CJ, Tan T, Zeng SL, Dong X, Liu EH, Li P. Relative quantification of multicomponents in Panax notoginseng (Sanqi) by high-performance liquid chromatography with mass spectrometry using mobile phase compensation. J Pharm Biomed Anal 2015;102:150-6. https://doi.org/10.1016/j.jpba.2014.09.004
  181. Chen J, Guo X, Song Y, Zhao M, Tu P, Jiang Y. MRM-based strategy for the homolog-focused detection of minor ginsenosides from notoginseng total saponins by ultra-performance liquid chromatography coupled with hybrid triple quadrupole-linear ion trap mass spectrometry. RSC Advances 2016;6: 96376-88. https://doi.org/10.1039/C6RA18459F
  182. Zhu D, Zhou Q, Li H, Li S, Dong Z, Li D, Zhang W. Pharmacokinetic characteristics of steamed notoginseng by an efficient LC-MS/MS method for simultaneously quantifying twenty-three triterpenoids. J Agr Food Chem 2018;66:8187-98. https://doi.org/10.1021/acs.jafc.8b03169
  183. Li S, Liu C, Liu C, Zhang Y. Extraction and in vitro screening of potential acetylcholinesterase inhibitors from the leaves of Panax japonicus. J Chromatogr B Analyt Technol Biomed Life Sci 2017;1061-1062:139-45. https://doi.org/10.1016/j.jchromb.2017.07.019
  184. Liu Y, Li J, He J, Abliz Z, Qu J, Yu S, Ma S, Liu J, Du D. Identification of new trace triterpenoid saponins from the roots of Panax notoginseng by high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 2009;23:667-79. https://doi.org/10.1002/rcm.3917
  185. Kim SH, Shin YS, Choi HK. Nano ESI-MS-based lipidomics to discriminate between cultivars, cultivation ages, and parts of Panax ginseng. Anal Bioanal Chem 2016;408:2109-21. https://doi.org/10.1007/s00216-016-9314-5
  186. Podhorniak LV. A rapid miniaturized residue analytical method for the determination of zoxamide and its two acid metabolites in ginseng roots using UPLC-MS/MS. J Agr Food Chem 2014;62:3702-9. https://doi.org/10.1021/jf405403v
  187. Wan JY, Fan Y, Yu QT, Ge YZ, Yan CP, Alolga RN, Li P, Ma ZH, Qi LW. Integrated evaluation of malonyl ginsenosides, amino acids and polysaccharides in fresh and processed ginseng. J Pharm Biomed Anal 2015;107:89-97. https://doi.org/10.1016/j.jpba.2014.11.014
  188. Xie YY, Luo D, Cheng YJ, Ma JF, Wang YM, Liang QL, Luo GA. Steaminginduced chemical transformations and holistic quality assessment of red ginseng derived from Panax ginseng by means of HPLC-ESI-MS/MS(n)-based multicomponent quantification fingerprint. J Agr Food Chem 2012;60:8213-24. https://doi.org/10.1021/jf301116x
  189. Qiu S, Yang WZ, Yao CL, Qiu ZD, Shi XJ, Zhang JX, Hou JJ, Wang QR, Wu WY, Guo DA. Nontargeted metabolomic analysis and "commercial-homophyletic" comparison-induced biomarkers verification for the systematic chemical differentiation of five different parts of Panax ginseng. J Chromatogr A 2016;1453:78-87. https://doi.org/10.1016/j.chroma.2016.05.051
  190. Lee DY, Cho JG, Bang MH, Han MW, Lee MH, Yang DC, Baek NI. Discrimination of Korean ginseng (Panax ginseng) roots using rapid resolution LCQTOF/MS combined by multivariate statistical analysis. Food Sci Biotechnol 2011;20:1119-24. https://doi.org/10.1007/s10068-011-0152-0
  191. Sun J, Mi J, Qin Q, Yu Q, Wu W, Liu S. Identification of ginsenosides Rc, Rb2, Rb3 and related malonyl-ginsenosides in Panax ginseng extracts by using RRLC-Q-TOF-MS/MS. International Conference on Human Health and Biomedical Engineering 2011:1140-3.
  192. Wu W, Sun L, Zhang Z, Guo Y, Liu S. Profiling and multivariate statistical analysis of Panax ginseng based on ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. J Pharm Biomed Anal 2015;107:141-50. https://doi.org/10.1016/j.jpba.2014.12.030
  193. Wang HP, Zhang YB, Yang XW, Zhao DQ, Wang YP. Rapid characterization of ginsenosides in the roots and rhizomes of Panax ginseng by UPLC-DAD-QTOF-MS/MS and simultaneous determination of 19 ginsenosides by HPLC-ESI-MS. J Ginseng Res 2016;40:382-94. https://doi.org/10.1016/j.jgr.2015.12.001
  194. Wang HP, Liu Y, Chen C, Xiao HB. Screening specific biomarkers of herbs using a metabolomics approach: a case study of Panax ginseng. Sci Rep 2017;7:4609. https://doi.org/10.1038/s41598-017-04712-7
  195. Zhang HM, Li SL, Zhang H, Wang Y, Zhao ZL, Chen SL, Xu HX. Holistic quality evaluation of commercial white and red ginseng using a UPLC-QTOF-MS/MS-based metabolomics approach. J Pharm Biomed Anal 2012;62:258-73. https://doi.org/10.1016/j.jpba.2012.01.010
  196. Chang X, Zhang J, Li D, Zhou D, Zhang Y, Wang J, Hu B, Ju A, Ye Z. Nontargeted metabolomics approach for the differentiation of cultivation ages of mountain cultivated ginseng leaves using UHPLC/QTOF-MS. J Pharm Biomed Anal 2017;141:108-22. https://doi.org/10.1016/j.jpba.2017.04.009
  197. Zhu H, Shen H, Xu J, Xu JD, Zhu LY, Wu J, Chen HB, Li SL. Comparative study on intestinal metabolism and absorption in vivo of ginsenosides in sulphur-fumigated and non-fumigated ginseng by ultra performance liquid chromatography quadruple time-of-flight mass spectrometry based chemical profiling approach. Drug Test Anal 2015;7:320-30. https://doi.org/10.1002/dta.1675
  198. Song HH, Moon JY, Ryu HW, Noh BS, Kim JH, Lee HK, Oh SR. Discrimination of white ginseng origins using multivariate statistical analysis of data sets. J Ginseng Res 2014;38:187-93. https://doi.org/10.1016/j.jgr.2014.03.002
  199. In G, Seo HK, Park HW, Jang KH. A metabolomic approach for the discrimination of red ginseng root parts and targeted validation. Molecules 2017;22.
  200. Xu XF, Xu SY, Zhang Y, Zhang H, Liu MN, Liu H, Gao Y, Xue X, Xiong H, Lin RC, et al. Chemical comparison of two drying methods of mountain cultivated ginseng by UPLC-QTOF-MS/MS and multivariate statistical analysis. Molecules 2017;22.
  201. Lee JW, Choi BR, Kim YC, Choi DJ, Lee YS, Kim GS, Baek NI, Kim SY, Lee DY. Comprehensive profiling and quantification of ginsenosides in the root, stem, leaf, and berry of Panax ginseng by UPLC-QTOF/MS. Molecules 2017;22.
  202. Yuan J, Chen Y, Liang J, Wang CZ, Liu X, Yan Z, Tang Y, Li J, Yuan CS. Component analysis and target cell-based neuroactivity screening of Panax ginseng by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016;1038:1-11. https://doi.org/10.1016/j.jchromb.2016.10.014
  203. Li X, Yao F, Fan H, Li K, Sun L, Liu Y. Intraconversion of polar ginsenosides, their transformation into less-polar ginsenosides, and ginsenoside acetylation in ginseng flowers upon baking and steaming. Molecules 2018;23.
  204. Lee JW, Ji SH, Choi BR, Choi DJ, Lee YG, Kim HG, Kim GS, Kim K, Lee YH, Baek NI, et al. UPLC-QTOF/MS-based metabolomics applied for the quality evaluation of four pocessed Panax ginseng products. Molecules 2018;23.
  205. Huang BM, Zha QL, Chen TB, Xiao SY, Xie Y, Luo P, Wang YP, Liu L, Zhou H. Discovery of markers for discriminating the age of cultivated ginseng by using UHPLC-QTOF/MS coupled with OPLS-DA. Phytomedicine 2018;45:8-17. https://doi.org/10.1016/j.phymed.2018.03.011
  206. Zhao Q, Zhao N, Ye X, He M, Yang Y, Gao H, Zhang X. Rapid discrimination between red and white ginseng based on unique mass-spectrometric features. J Pharm Biomed Anal 2019;164:202-10. https://doi.org/10.1016/j.jpba.2018.10.007
  207. Zhu H, Lin H, Tan J, Wang C, Wang H, Wu F, Dong Q, Liu Y, Li P, Liu J. UPLCQTOF/MS-based nontargeted metabolomic analysis of mountain- and garden-cultivated ginseng of different ages in Northeast China. Molecules 2018;24.
  208. Qi LW, Wang HY, Zhang H, Wang CZ, Li P, Yuan CS. Diagnostic ion filtering to characterize ginseng saponins by rapid liquid chromatography with time-of-flight mass spectrometry. J Chromatogr A 2012;1230:93-9. https://doi.org/10.1016/j.chroma.2012.01.079
  209. Lin H, Zhu H, Tan J, Wang H, Dong Q, Wu F, Liu Y, Li P, Liu J. Non-targeted metabolomic analysis of methanolic extracts of wild-simulated and field-grown American ginseng. Molecules 2019;24.
  210. Sun J, Chen P. Differentiation of Panax quinquefolius grown in the USA and China using LC/MS-based chromatographic fingerprinting and chemometric approaches. Anal Bioanal Chem 2011;399:1877-89. https://doi.org/10.1007/s00216-010-4586-7
  211. Sun X, Chen P, Cook SL, Jackson GP, Harnly JM, Harrington PB. Classification of cultivation locations of Panax quinquefolius L samples using high performance liquid chromatography-electrospray ionization mass spectrometry and chemometric analysis. Anal Chem 2012;84:3628-34. https://doi.org/10.1021/ac2032832
  212. Wen XD, Yang J, Ma RH, Gao W, Qi LW, Li P, Bauer BA, Du GJ, Zhang Z, Somogyi J, et al. Analysis of Panax notoginseng metabolites in rat bile by liquid chromatography-quadrupole time-of-flight mass spectrometry with microdialysis sampling. J Chromatogr B Analyt Technol Biomed Life Sci 2012;895-896:162-8. https://doi.org/10.1016/j.jchromb.2012.03.009
  213. Liu P, Yu HS, Zhang LJ, Song XB, Kang LP, Liu JY, Zhang J, Cao M, Yu K, Kang TG, et al. A rapid method for chemical fingerprint analysis of Panax notoginseng powders by ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Chin J Nat Med 2015;13: 471-80. https://doi.org/10.1016/S1875-5364(15)30042-X
  214. Xiao J, Chen H, Kang D, Shao Y, Shen B, Li X, Yin X, Zhu Z, Li H, Rao T, et al. Qualitatively and quantitatively investigating the regulation of intestinal microbiota on the metabolism of Panax notoginseng saponins. J Ethnopharmacol 2016;194:324-36. https://doi.org/10.1016/j.jep.2016.09.027
  215. Liu F, Ma N, He C, Hu Y, Li P, Chen M, Su H, Wan JB. Qualitative and quantitative analysis of the saponins in Panax notoginseng leaves using ultraperformance liquid chromatography coupled with time-of-flight tandem mass spectrometry and high performance liquid chromatography coupled with UV detector. J Ginseng Res 2018;42:149-57. https://doi.org/10.1016/j.jgr.2017.01.007
  216. Shi XJ, Yang WZ, Qiu S, Yao CL, Shen Y, Pan HQ, Bi QR, Yang M, Wu WY, Guo DA. An in-source multiple collision-neutral loss filtering based nontargeted metabolomics approach for the comprehensive analysis of malonylginsenosides from Panax ginseng, P. quinquefolius, and P. notoginseng. Anal Chim Acta 2017;952:59-70. https://doi.org/10.1016/j.aca.2016.11.032
  217. Shi X, Yang W, Huang Y, Hou J, Qiu S, Yao C, Feng Z, Wei W, Wu W, Guo D. Direct screening of malonylginsenosides from nine Ginseng extracts by an untargeted profiling strategy incorporating in-source collision-induced dissociation, mass tag, and neutral loss scan on a hybrid linear ion-trap/Orbitrap mass spectrometer coupled to ultra-high performance liquid chromatography. J Chromatogr A 2018;1571:213-22. https://doi.org/10.1016/j.chroma.2018.08.026
  218. Wang S, Qiao L, Shi X, Hu C, Kong H, Xu G. On-line stop-flow two-dimensional liquid chromatography-mass spectrometry method for the separation and identification of triterpenoid saponins from ginseng extract. Anal Bioanal Chem 2015;407:331-41. https://doi.org/10.1007/s00216-014-8219-4
  219. Wu Y, Liu J, Gu S, Lin L, Chen Y, Ma M, Chen B. Orthogonal strategy development using reversed macroporous resin coupled with hydrophilic interaction liquid chromatography for the separation of ginsenosides from ginseng root extract. J Sep Sci 2017;40:4128-34. https://doi.org/10.1002/jssc.201700487
  220. Yang W, Zhang J, Yao C, Qiu S, Chen M, Pan H, Shi X, Wu W, Guo D. Method development and application of offline two-dimensional liquid chromatography/quadrupole time-of-flight mass spectrometry-fast data directed analysis for comprehensive characterization of the saponins from Xueshuantong Injection. J Pharm Biomed Anal 2016;128:322-32. https://doi.org/10.1016/j.jpba.2016.05.035
  221. Shehzad O, Ha IJ, Park Y, Ha YW, Kim YS. Development of a rapid and convenient method to separate eight ginsenosides from Panax ginseng by high-speed counter-current chromatography coupled with evaporative light scattering detection. J Sep Sci 2011;34:1116-22. https://doi.org/10.1002/jssc.201000932
  222. Cheng Y, Zhang M, Liang Q, Hu P, Wang Y, Jun FW, Luo G. Two-step preparation of ginsenoside-Re, Rb1, Rc and Rb2 from the root of Panax ginseng by high-performance counter-current chromatography. Sep Purif Technol 2011;77:347-54. https://doi.org/10.1016/j.seppur.2011.01.003
  223. Chen F, Luo J, Kong L. Fast isolation of ginsenosides Re and Rg1 from the roots of Panax ginseng by HSCCC-ELSD combined with MCI gel CC guided by HPLC-MS. J Liq Chromatogr R T 2012;35:912-23. https://doi.org/10.1080/10826076.2011.613144
  224. Wang J, Liu CM, Li L, Bai HL. Isolation of four high-purity dammarane saponins from extract of Panax notoginseng by centrifugal partition chromatography coupled with evaporative light scattering detection in one operation. Phytochem Anal 2011;22:263-7. https://doi.org/10.1002/pca.1274
  225. Shehzad O, Kim HP, Kim YS. State-of-the-art separation of ginsenosides from Korean white and red ginseng by countercurrent chromatography. Anal Bioanal Chem 2013;405:4523-30. https://doi.org/10.1007/s00216-012-6609-z
  226. Cao XL, Tian Y, Zhang TY, Liu QH, Jia LJ, Ito Y. Separation of dammarane-saponins from notoginseng, root of Panax notoginseng (Burk.) F. H. Chen, by HSCCC coupled with evaporative light scattering detector. J Liq Chromatogr R T 2007;26:1579-91.
  227. Wang S, Ye S, Cheng Y. Separation and on-line concentration of saponins from Panax notoginseng by micellar electrokinetic chromatography. J Chromatogr A 2006;1109:279-84. https://doi.org/10.1016/j.chroma.2006.01.023
  228. Zhao H, Xu J, Ghebrezadik H, Hylands PJ. Metabolomic quality control of commercial Asian ginseng, and cultivated and wild American ginseng using 1H NMR and multi-step PCA. J Pharm Biomed Anal 2015;114:113-20. https://doi.org/10.1016/j.jpba.2015.05.010
  229. Huang Y, Zhang T, Zhao Y, Zhou H, Tang G, Fillet M, Crommen J, Jiang Z. Simultaneous analysis of nucleobases, nucleosides and ginsenosides in ginseng extracts using supercritical fluid chromatography coupled with single quadrupole mass spectrometry. J Pharm Biomed Anal 2017;144:213-9. https://doi.org/10.1016/j.jpba.2017.03.059
  230. Shi X, Yang W, Qiu S, Hou J, Wu W, Guo D. Systematic profiling and comparison of the lipidomes from Panax ginseng, P. quinquefolius, and P. notoginseng by ultrahigh performance supercritical fluid chromatography/high-resolution mass spectrometry and ion mobility-derived collision cross section measurement. J Chromatogr A 2018;1548:64-75. https://doi.org/10.1016/j.chroma.2018.03.025
  231. Liu Y, Xie MX, Kang J, Zheng D. Studies on the interaction of total saponins of Panax notoginseng and human serum albumin by Fourier transform infrared spectroscopy. Spectrochim Acta Part A 2003;59:2747-58. https://doi.org/10.1016/S1386-1425(03)00055-6
  232. Chen H, Lin Z, Tan C. Fast discrimination of the geographical origins of notoginseng by near-infrared spectroscopy and chemometrics. J Pharm Biomed Anal 2018;161:239-45. https://doi.org/10.1016/j.jpba.2018.08.052
  233. Lee BJ, Kim HY, Lim SR, Huang L, Choi HK. Discrimination and prediction of cultivation age and parts of Panax ginseng by Fourier-transform infrared spectroscopy combined with multivariate statistical analysis. PLoS One 2017;12:e0186664. https://doi.org/10.1371/journal.pone.0186664
  234. Yao H, Shi PY, Shao Q, Fan XH. Chemical fingerprinting and quantitative analysis of a Panax notoginseng preparation using HPLC-UV and HPLC-MS. Chin Med-Uk 2011;6.
  235. MacCrehan WA, White CM. Simplified ultrasonically- and microwave-assisted solvent extractions for the determination of ginsenosides in powdered Panax ginseng rhizomes using liquid chromatography with UV absorbance or electrospray mass spectrometric detection. Anal Bioanal Chem 2013;405:4511-22. https://doi.org/10.1007/s00216-013-6871-8
  236. Mao Q, Li Y, Li SL, Yang J, Zhang PH, Wang Q. Chemical profiles and anticancer effects of saponin fractions of different polarity from the leaves of Panax notoginseng. Chin J Nat Med 2014;12:30-7. https://doi.org/10.1016/S1875-5364(14)60006-6

Cited by

  1. Panax quinquefolius (North American Ginseng) Polysaccharides as Immunomodulators: Current Research Status and Future Directions vol.25, pp.24, 2021, https://doi.org/10.3390/molecules25245854
  2. Anticancer Activities of Ginsenosides, the Main Active Components of Ginseng vol.2021, 2021, https://doi.org/10.1155/2021/8858006
  3. Korean Panax Ginseng Reduces Orthodontic Tooth Movement in Rats vol.11, pp.19, 2021, https://doi.org/10.3390/app11198856
  4. Iron toxicity-induced regulation of key secondary metabolic processes associated with the quality and resistance of Panax ginseng and Panax quinquefolius vol.224, 2021, https://doi.org/10.1016/j.ecoenv.2021.112648
  5. Region-Specific Biomarkers and Their Mechanisms in the Treatment of Lung Adenocarcinoma: A Study of Panax quinquefolius from Wendeng, China vol.26, pp.22, 2021, https://doi.org/10.3390/molecules26226829
  6. Isolation and Identification of Non-Conjugated Linoleic Acid from Processed Panax ginseng Using LC-MS/MS and 1H-NMR vol.8, pp.11, 2021, https://doi.org/10.3390/separations8110208
  7. Predominance of oleanane-type ginsenoside R0 and malonyl esters of protopanaxadiol-type ginsenosides in the 20-year-old suspension cell culture of Panax japonicus C.A. Meyer vol.177, 2021, https://doi.org/10.1016/j.indcrop.2021.114417