DOI QR코드

DOI QR Code

Functional roles and mechanisms of ginsenosides from Panax ginseng in atherosclerosis

  • Xue, Qianqian (Department of Pharmacology, School of Pharmacy, Qingdao University) ;
  • He, Ningning (School of Basic Medicine, Qingdao University) ;
  • Wang, Zhibin (Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University) ;
  • Fu, Xiuxiu (Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University) ;
  • Aung, Lynn Htet Htet (Institute for translational medicine, School of Basic Medicine, Qingdao University) ;
  • Liu, Yan (Institute for translational medicine, School of Basic Medicine, Qingdao University) ;
  • Li, Min (Institute for translational medicine, School of Basic Medicine, Qingdao University) ;
  • Cho, Jae Youl (Department of Integrative Biotechnology, Sungkyunkwan University) ;
  • Yang, Yanyan (School of Basic Medicine, Qingdao University) ;
  • Yu, Tao (Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University)
  • Received : 2020.02.24
  • Accepted : 2020.07.07
  • Published : 2021.01.15

Abstract

Atherosclerosis (AS) is a leading cause of cardiovascular diseases (CVDs) and it results in a high rate of death worldwide, with an increased prevalence with age despite advances in lifestyle management and drug therapy. Atherosclerosis is a chronic progressive inflammatory process, and it mainly presents with lipid accumulation, foam cell proliferation, inflammatory response, atherosclerotic plaque formation and rupture, thrombosis, and vascular calcification. Therefore, there is a great need for reliable therapeutic drugs or remedies to cure or alleviate atherosclerosis and reduce the societal burden. Ginsenosides are natural steroid glycosides and triterpene saponins obtained mainly from the plant ginseng. Several recent studies have reported that ginsenosides have a variety of pharmacological activities against several diseases including inflammation, cancer and cardiovascular diseases. This review focuses on describing the different pharmacological functions and underlying mechanisms of various active ginsenosides (Rb1,-Rd, -F, -Rg1, -Rg2, and -Rg3, and compound K) for atherosclerosis, which could provide useful insights for developing novel and effective anti-cardiovascular drugs.

Keywords

References

  1. Jokinen E. Obesity and cardiovascular disease. Minerva Pediatr 2015;67:25-32.
  2. Kadoya M, Koyama H. Sleep, autonomic nervous function and atherosclerosis. Int J Mol Sci 2019;20.
  3. Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 2011;17:1410-22. https://doi.org/10.1038/nm.2538
  4. Sedding DG, Boyle EC, Demandt JAF, Sluimer JC, Dutzmann J, Haverich A, Bauersachs J. Vasa vasorum angiogenesis: key player in the initiation and progression of atherosclerosis and potential target for the treatment of cardiovascular disease. Front Immunol 2018;9:706. https://doi.org/10.3389/fimmu.2018.00706
  5. Chovatiya R, Medzhitov R. Stress, inflammation, and defense of homeostasis. Mol Cell 2014;54:281-8. https://doi.org/10.1016/j.molcel.2014.03.030
  6. Medzhitov R. Origin and physiological roles of inflammation. Nature 2008;454:428-35. https://doi.org/10.1038/nature07201
  7. Frostegard J. Immunity, atherosclerosis and cardiovascular disease. BMC Med 2013;11:117. https://doi.org/10.1186/1741-7015-11-117
  8. Kim CK, Cho DH, Lee KS, Lee DK, Park CW, Kim WG, Lee SJ, Ha KS, Goo Taeg O, Kwon YG, et al. Ginseng berry extract prevents atherogenesis via anti-inflammatory action by upregulating phase II gene expression. Evid Based Complement Alternat Med 2012;2012:490301.
  9. Jiang Y, Jiang LL, Maimaitirexiati XM, Zhang Y, Wu L. Irbesartan attenuates TNF-alpha-induced ICAM-1, VCAM-1, and E-selectin expression through suppression of NF-kappaB pathway in HUVECs. Eur Rev Med Pharmacol Sci 2015;19:3295-302.
  10. Gao W, Liu H, Yuan J, Wu C, Huang D, Ma Y, Zhu J, Ma L, Guo J, Shi H, et al. Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-alpha mediated NF-kappaB pathway. J Cell Mol Med 2016;20:2318-27. https://doi.org/10.1111/jcmm.12923
  11. Durham AL, Speer MY, Scatena M, Giachelli CM, Shanahan CM. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res 2018;114:590-600. https://doi.org/10.1093/cvr/cvy010
  12. Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res 2016;118:692-702. https://doi.org/10.1161/CIRCRESAHA.115.306361
  13. Chistiakov DA, Orekhov AN, Bobryshev YV. Vascular smooth muscle cell in atherosclerosis. Acta Physiol 2015;214:33-50 (Oxf). https://doi.org/10.1111/apha.12466
  14. Zhao Y, Wang Z, Zhang W, Zhang L. MicroRNAs play an essential role in autophagy regulation in various disease phenotypes. Biofactors 2019;45:844-56. https://doi.org/10.1002/biof.1555
  15. Evans TD, Jeong SJ, Zhang X, Sergin I, Razani B. TFEB and trehalose drive the macrophage autophagy-lysosome system to protect against atherosclerosis. Autophagy 2018;14:724-6. https://doi.org/10.1080/15548627.2018.1434373
  16. Hamada M, Nakamura M, Tran MT, Moriguchi T, Hong C, Ohsumi T, Dinh TT, Kusakabe M, Hattori M, Katsumata T, et al. MafB promotes atherosclerosis by inhibiting foam-cell apoptosis. Nat Commun 2014;5:3147. https://doi.org/10.1038/ncomms4147
  17. Baeg IH, So SH. The world ginseng market and the ginseng (Korea). J Ginseng Res 2013;37:1-7. https://doi.org/10.5142/jgr.2013.37.1
  18. Nguyen NH, Nguyen CT. Pharmacological effects of ginseng on infectious diseases. Inflammopharmacology 2019;27:871-83. https://doi.org/10.1007/s10787-019-00630-4
  19. Zhou SS, Auyeung KK, Yip KM, Ye R, Zhao ZZ, Mao Q, Xu J, Chen HB, Li SL. Stronger anti-obesity effect of white ginseng over red ginseng and the potential mechanisms involving chemically structural/compositional specificity to gut microbiota. Phytomedicine 2018:152761.
  20. Sun Y, Liu Y, Chen K. Roles and mechanisms of ginsenoside in cardiovascular diseases: progress and perspectives. Sci China Life Sci 2016;59:292-8. https://doi.org/10.1007/s11427-016-5007-8
  21. Shin SJ, Jeon SG, Kim JI, Jeong YO, Kim S, Park YH, Lee SK, Park HH, Hong SB, Oh S, et al. Red ginseng attenuates abeta-induced mitochondrial dysfunction and abeta-mediated pathology in an animal model of Alzheimer's disease. Int J Mol Sci 2019;20.
  22. Jin S, Jeon JH, Lee S, Kang WY, Seong SJ, Yoon YR, Choi MK, Song IS. Detection of 13 ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg3, Rh2, F1, compound K, 20(S)-Protopanaxadiol, and 20(S)-Protopanaxatriol) in human plasma and application of the analytical method to human pharmacokinetic studies following two week-repeated administration of red ginseng extract. Molecules 2019;24.
  23. Dou DQ, Ren J, Chen Y, Pei YP, Chen YJ. [Study on the chemical constituents of the roots of commercial ginseng]. Zhongguo Zhong Yao Za Zhi 2003;28:522-4.
  24. Jiang R, Dong J, Li X, Du F, Jia W, Xu F, Wang F, Yang J, Niu W, Li C. Molecular mechanisms governing different pharmacokinetics of ginsenosides and potential for ginsenoside-perpetrated herb-drug interactions on OATP1B3. Br J Pharmacol 2015;172:1059-73. https://doi.org/10.1111/bph.12971
  25. Yu T, Yang Y, Kwak YS, Song GG, Kim MY, Rhee MH, Cho JY. Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANKbinding kinase 1/interferon regulatory factor-3 and p38/ATF-2. J Ginseng Res 2017;41:127-33. https://doi.org/10.1016/j.jgr.2016.02.001
  26. Yu T, Rhee MH, Lee J, Kim SH, Yang Y, Kim HG, Kim Y, Kim C, Kwak YS, Kim JH, et al. Ginsenoside Rc from Korean red ginseng (panax ginseng C.A. Meyer) attenuates inflammatory symptoms of gastritis, hepatitis and arthritis. Am J Chin Med 2016;44:595-615. https://doi.org/10.1142/S0192415X16500336
  27. Fu C, Yin D, Nie H, Sun D. Notoginsenoside R1 protects HUVEC against oxidized low density lipoprotein (Ox-LDL)-Induced atherogenic response via down-regulating miR-132. Cell Physiol Biochem 2018;51:1739-50. https://doi.org/10.1159/000495677
  28. Kim JH. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. J Ginseng Res 2018;42:264-9. https://doi.org/10.1016/j.jgr.2017.10.004
  29. Qiao L, Zhang X, Liu M, Liu X, Dong M, Cheng J, Zhang X, Zhai C, Song Y, Lu H, et al. Ginsenoside Rb1 enhances atherosclerotic plaque stability by improving autophagy and lipid metabolism in macrophage foam cells. Front Pharmacol 2017;8:727. https://doi.org/10.3389/fphar.2017.00727
  30. Yang G, Zhuo J, Lin Y, Zhang M, Liu L, Chen X, Gao R. Ginsenoside Rb1 prevents dysfunction of endothelial cells by suppressing inflammatory response and apoptosis in the high-fat diet plus balloon catheter-injured rabbit model via the G protein-coupled estrogen receptor-mediated phosphatidylinositol 3-kinases (PI3K)/Akt pathway. Med Sci Monit 2019;25:7407-17. https://doi.org/10.12659/MSM.912986
  31. Nanao-Hamai M, Son BK, Komuro A, Asari Y, Hashizume T, Takayama KI, Ogawa S, Akishita M. Ginsenoside Rb1 inhibits vascular calcification as a selective androgen receptor modulator. Eur J Pharmacol 2019;859:172546. https://doi.org/10.1016/j.ejphar.2019.172546
  32. Zhang S, Deng J, Gao Y, Yang DL, Gong QH, Huang XN. Ginsenoside Rb(1) inhibits the carotid neointimal hyperplasia induced by balloon injury in rats via suppressing the phenotype modulation of vascular smooth muscle cells. Eur J Pharmacol 2012;685:126-32. https://doi.org/10.1016/j.ejphar.2012.04.032
  33. Zhang XJ, He C, Tian K, Li P, Su H, Wan JB. Ginsenoside Rb1 attenuates angiotensin II-induced abdominal aortic aneurysm through inactivation of the JNK and p38 signaling pathways. Vascul Pharmacol 2015;73:86-95. https://doi.org/10.1016/j.vph.2015.04.003
  34. Zhou P, Xie W, Luo Y, Lu S, Dai Z, Wang R, Zhang X, Li G, Sun G, Sun X. Inhibitory effects of ginsenoside Rb1 on early atherosclerosis in ApoE-/- mice via inhibition of apoptosis and enhancing autophagy. Molecules 2018;23.
  35. Qomaladewi NP, Kim MY, Cho JY. Autophagy and its regulation by ginseng components. J Ginseng Res 2019;43:349-53. https://doi.org/10.1016/j.jgr.2018.12.011
  36. Tang N, Jiang S, Yang Y, Liu S, Ponnusamy M, Xin H, Yu T. Noncoding RNAs as therapeutic targets in atherosclerosis with diabetes mellitus. Cardiovasc Ther 2018;36:e12436. https://doi.org/10.1111/1755-5922.12436
  37. Yu T, Wang Z, Jie W, Fu X, Li B, Xu H, Liu Y, Li M, Kim E, Yang Y, et al. The kinase inhibitor BX795 suppresses the inflammatory response via multiple kinases. Biochem Pharmacol 2020;174:113797. https://doi.org/10.1016/j.bcp.2020.113797
  38. Yang Y, Yu T, Jiang S, Zhang Y, Li M, Tang N, Ponnusamy M, Wang JX, Li PF. miRNAs as potential therapeutic targets and diagnostic biomarkers for cardiovascular disease with a particular focus on WO2010091204. Expert Opin Ther Pat 2017;27:1021-9. https://doi.org/10.1080/13543776.2017.1344217
  39. Liu H, Liu M, Jin Z, Yaqoob S, Zheng M, Cai D, Liu J, Guo S. Ginsenoside Rg2 inhibits adipogenesis in 3T3-L1 preadipocytes and suppresses obesity in high-fat-diet-induced obese mice through the AMPK pathway. Food Funct 2019;10:3603-14. https://doi.org/10.1039/c9fo00027e
  40. Liu S, Yang Y, Jiang S, Tang N, Tian J, Ponnusamy M, Tariq MA, Lian Z, Xin H, Yu T. Understanding the role of non-coding RNA (ncRNA) in stent restenosis. Atherosclerosis 2018;272:153-61. https://doi.org/10.1016/j.atherosclerosis.2018.03.036
  41. Liu Y, Yang Y, Wang Z, Fu X, Chu XM, Li Y, Wang Q, He X, Li M, Wang K, et al. Insights into the regulatory role of circRNA in angiogenesis and clinical implications. Atherosclerosis 2020;298:14-26. https://doi.org/10.1016/j.atherosclerosis.2020.02.017
  42. Wang Q, Yang Y, Fu X, Wang Z, Liu Y, Li M, Zhang Y, Li Y, Li PF, Yu T, et al. Long noncoding RNA XXYLT1-AS2 regulates proliferation and adhesion by targeting the RNA binding protein FUS in HUVEC. Atherosclerosis 2020;298:58-69. https://doi.org/10.1016/j.atherosclerosis.2020.02.018
  43. Liu S, Yang Y, Jiang S, Xu H, Tang N, Lobo A, Zhang R, Liu S, Yu T, Xin H. MiR-378a-5p regulates proliferation and migration in vascular smooth muscle cell by targeting CDK1. Front Genet 2019;10:22. https://doi.org/10.3389/fgene.2019.00022
  44. Lu H, Zhou X, Kwok HH, Dong M, Liu Z, Poon PY, Luan X, Ngok-Shun Wong R. Ginsenoside-Rb1-Mediated anti-angiogenesis via regulating PEDF and miR-33a through the activation of PPAR-gamma pathway. Front Pharmacol 2017;8:783. https://doi.org/10.3389/fphar.2017.00783
  45. Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis. Circ Res 2016;118:653-67. https://doi.org/10.1161/CIRCRESAHA.115.306256
  46. Zhang X, Liu MH, Qiao L, Zhang XY, Liu XL, Dong M, Dai HY, Ni M, Luan XR, Guan J, et al. Ginsenoside Rb1 enhances atherosclerotic plaque stability by skewing macrophages to the M2 phenotype. J Cell Mol Med 2018;22:409-16. https://doi.org/10.1111/jcmm.13329
  47. Kitajima I, Nakajima T, Imamura T, Takasaki I, Kawahara K, Okano T, Tokioka T, Soejima Y, Abeyama K, Maruyama I. Induction of apoptosis in murine clonal osteoblasts expressed by human T-cell leukemia virus type I tax by NF-kappa B and TNF-alpha. J Bone Miner Res 1996;11:200-10. https://doi.org/10.1002/jbmr.5650110209
  48. Neurath MF, Fuss I, Pasparakis M, Alexopoulou L, Haralambous S, Meyer Zum Buschenfelde KH, Strober W, Kollias G. Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur J Immunol 1997;27:1743-50. https://doi.org/10.1002/eji.1830270722
  49. Zhou P, Lu S, Luo Y, Wang S, Yang K, Zhai Y, Sun G, Sun X. Attenuation of TNF-alpha-induced inflammatory injury in endothelial cells by ginsenoside Rb1 via inhibiting NF-kappaB, JNK and p38 signaling pathways. Front Pharmacol 2017;8:464. https://doi.org/10.3389/fphar.2017.00464
  50. Li QY, Chen L, Fu WH, Li ZD, Wang B, Shi XJ, Zhong MK. Ginsenoside Rb1 inhibits proliferation and inflammatory responses in rat aortic smooth muscle cells. J Agric Food Chem 2011;59:6312-8. https://doi.org/10.1021/jf200424k
  51. Zhou W, Chai H, Lin PH, Lumsden AB, Yao Q, Chen C. Ginsenoside Rb1 blocks homocysteine-induced endothelial dysfunction in porcine coronary arteries. J Vasc Surg 2005;41:861-8. https://doi.org/10.1016/j.jvs.2005.01.054
  52. Mimura J, Itoh K. Role of Nrf2 in the pathogenesis of atherosclerosis. Free Radic Biol Med 2015;88:221-32. https://doi.org/10.1016/j.freeradbiomed.2015.06.019
  53. Araujo JA, Zhang M, Yin F. Heme oxygenase-1, oxidation, inflammation, and atherosclerosis. Front Pharmacol 2012;3:119. https://doi.org/10.3389/fphar.2012.00119
  54. Fan J, Liu D, He C, Li X, He F. Inhibiting adhesion events by Panax notoginseng saponins and Ginsenoside Rb1 protecting arteries via activation of Nrf2 and suppression of p38 - VCAM-1 signal pathway. J Ethnopharmacol 2016;192: 423-30. https://doi.org/10.1016/j.jep.2016.09.022
  55. Xue M, Qian Q, Adaikalakoteswari A, Rabbani N, Babaei-Jadidi R, Thornalley PJ. Activation of NF-E2-related factor-2 reverses biochemical dysfunction of endothelial cells induced by hyperglycemia linked to vascular disease. Diabetes 2008;57:2809-17. https://doi.org/10.2337/db06-1003
  56. Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev 2015;67:821-70. https://doi.org/10.1124/pr.114.009654
  57. Inoue R, Hai L, Honda A. Pathophysiological implications of transient receptor potential channels in vascular function. Curr Opin Nephrol Hypertens 2008;17:193-8. https://doi.org/10.1097/MNH.0b013e3282f52467
  58. Guan YY, Zhou JG, Zhang Z, Wang GL, Cai BX, Hong L, Qiu QY, He H. Ginsenoside-Rd from panax notoginseng blocks Ca2+ influx through receptor- and store-operated Ca2+ channels in vascular smooth muscle cells. Eur J Pharmacol 2006;548:129-36. https://doi.org/10.1016/j.ejphar.2006.08.001
  59. Li XY, Liang J, Tang YB, Zhou JG, Guan YY. Ginsenoside Rd prevents glutamateinduced apoptosis in rat cortical neurons. Clin Exp Pharmacol Physiol 2010;37:199-204. https://doi.org/10.1111/j.1440-1681.2009.05286.x
  60. Li J, Xie ZZ, Tang YB, Zhou JG, Guan YY. Ginsenoside-Rd, a purified component from panax notoginseng saponins, prevents atherosclerosis in apoE knockout mice. Eur J Pharmacol 2011;652:104-10. https://doi.org/10.1016/j.ejphar.2010.11.017
  61. Hong JY, Bae WJ, Yi JK, Kim GT, Kim EC. Anti-inflammatory and antiosteoclastogenic effects of zinc finger protein A20 overexpression in human periodontal ligament cells. J Periodontal Res 2016;51:529-39. https://doi.org/10.1111/jre.12332
  62. Lee CS, Nam G, Bae IH, Park J. Whitening efficacy of ginsenoside F1 through inhibition of melanin transfer in cocultured human melanocytes-keratinocytes and three-dimensional human skin equivalent. J Ginseng Res 2019;43:300-4. https://doi.org/10.1016/j.jgr.2017.12.005
  63. Hou J, Cui C, Kim S, Sung C, Choi C. Ginsenoside F1 suppresses astrocytic senescence-associated secretory phenotype. Chem Biol Interact 2018;283: 75-83. https://doi.org/10.1016/j.cbi.2018.02.002
  64. Noh HY, Lu J, Hanif Siddiqi M, Natatajan S, Kang S, Ahn S, Kim YJ, Yang DC. Computational investigation of ginsenoside F1 from Panax ginseng meyer as p38 MAP kinase inhibitor: molecular docking and dynamics simulations, ADMET analysis, and drug likeness prediction. Iran J Pharm Res 2018;17:1318-27.
  65. Wang W, Liu W, Fidler T, Wang Y, Tang Y, Woods B, Welch C, Cai B, SilvestreRoig C, Ai D, et al. Macrophage inflammation, erythrophagocytosis, and accelerated atherosclerosis in Jak2 (V617F) mice. Circ Res 2018;123:-35-47.
  66. Qin M, Luo Y, Lu S, Sun J, Yang K, Sun G, Sun X. Ginsenoside F1 ameliorates endothelial cell inflammatory injury and prevents atherosclerosis in mice through A20-mediated suppression of NF-kB signaling. Front Pharmacol 2017;8:953. https://doi.org/10.3389/fphar.2017.00953
  67. Ham J, Jeong D, Park S, Kim HW, Kim H, Kim SJ. Ginsenoside Rg3 and Korean Red Ginseng extract epigenetically regulate the tumor-related long noncoding RNAs RFX3-AS1 and STXBP5-AS1. J Ginseng Res 2019;43:625-34. https://doi.org/10.1016/j.jgr.2019.02.004
  68. Cheung LW, Leung KW, Wong CK, Wong RN, Wong AS. Ginsenoside-Rg1 induces angiogenesis via non-genomic crosstalk of glucocorticoid receptor and fibroblast growth factor receptor-1. Cardiovasc Res 2011;89:419-25. https://doi.org/10.1093/cvr/cvq300
  69. Li JP, Zhao FL, Yuan Y, Sun TT, Zhu L, Zhang WY, Liu MX. Studies on antiangiogenesis of ginsenoside structure modification HRG in vitro. Biochem Biophys Res Commun 2017;492:391-6. https://doi.org/10.1016/j.bbrc.2017.08.090
  70. Yang P, Ling L, Sun W, Yang J, Zhang L, Chang G, Guo J, Sun J, Sun L, Lu D. Ginsenoside Rg1 inhibits apoptosis by increasing autophagy via the AMPK/mTOR signaling in serum deprivation macrophages. Acta Biochim Biophys Sin (Shanghai) 2018;50:144-55. https://doi.org/10.1093/abbs/gmx136
  71. Gautier EL, Huby T, Witztum JL, Ouzilleau B, Miller ER, Saint-Charles F, Aucouturier P, Chapman MJ, Lesnik P. Macrophage apoptosis exerts divergent effects on atherogenesis as a function of lesion stage. Circulation 2009;119:1795-804. https://doi.org/10.1161/CIRCULATIONAHA.108.806158
  72. Li SG, Yan MZ, Zhang D, Ye M, Deng JJ. Effects of ginsenoside Rg1 on the senescence of vascular smooth muscle cells. Genet Mol Res 2016;15.
  73. Gao Y, Deng J, Yu XF, Yang DL, Gong QH, Huang XN. Ginsenoside Rg1 inhibits vascular intimal hyperplasia in balloon-injured rat carotid artery by down-regulation of extracellular signal-regulated kinase 2. J Ethnopharmacol 2011;138:472-8. https://doi.org/10.1016/j.jep.2011.09.029
  74. Blankenberg S, Barbaux S, Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis 2003;170:191-203. https://doi.org/10.1016/S0021-9150(03)00097-2
  75. Cho YS, Kim CH, Ha TS, Lee SJ, Ahn HY. Ginsenoside rg2 inhibits lipopolysaccharide-induced adhesion molecule expression in human umbilical vein endothelial cell. Korean J Physiol Pharmacol 2013;17:133-7. https://doi.org/10.4196/kjpp.2013.17.2.133
  76. Guo M, Xiao J, Sheng X, Zhang X, Tie Y, Wang L, Zhao L, Ji X. Ginsenoside Rg3 mitigates atherosclerosis progression in diabetic apoE-/- mice by skewing macrophages to the M2 phenotype. Front Pharmacol 2018;9:464. https://doi.org/10.3389/fphar.2018.00464
  77. Lu S, Luo Y, Zhou P, Yang K, Sun G, Sun X. Ginsenoside compound K protects human umbilical vein endothelial cells against oxidized low-density lipoprotein-induced injury via inhibition of nuclear factor-kappaB, p38, and JNK MAPK pathways. J Ginseng Res 2019;43:95-104. https://doi.org/10.1016/j.jgr.2017.09.004
  78. Lee ES, Choi JS, Kim MS, You HJ, Ji GE, Kang YH. Ginsenoside metabolite compound K differentially antagonizing tumor necrosis factor-alpha-induced monocyte-endothelial trafficking. Chem Biol Interact 2011;194:13-22. https://doi.org/10.1016/j.cbi.2011.08.008
  79. Park ES, Lee KP, Jung SH, Lee DY, Won KJ, Yun YP, Kim B. Compound K, an intestinal metabolite of ginsenosides, inhibits PDGF-BB-induced VSMC proliferation and migration through G1 arrest and attenuates neointimal hyperplasia after arterial injury. Atherosclerosis 2013;228:53-60. https://doi.org/10.1016/j.atherosclerosis.2013.02.002
  80. Gao Y, Zhu P, Xu SF, Li YQ, Deng J, Yang DL. Ginsenoside Re inhibits PDGF-BB-induced VSMC proliferation via the eNOS/NO/cGMP pathway. Biomed Pharmacother 2019;115:108934. https://doi.org/10.1016/j.biopha.2019.108934
  81. Huang Y, Liu H, Zhang Y, Li J, Wang C, Zhou L, Jia Y, Li X. Synthesis and biological evaluation of ginsenoside compound K derivatives as a novel class of LXRalpha activator. Molecules 2017;22.
  82. Li N, Xu Y, Feng T, Liu C, Li Y, Wang X, Si S. Identification of a selective agonist for liver X receptor alpha (LXRalpha) via screening of a synthetic compound library. J Biomol Screen 2014;19:566-74. https://doi.org/10.1177/1087057113516004
  83. Zhou L, Zheng Y, Li Z, Bao L, Dou Y, Tang Y, Zhang J, Zhou J, Liu Y, Jia Y, et al. Compound K attenuates the development of atherosclerosis in ApoE(-/-) mice via LXRalpha activation. Int J Mol Sci 2016;17.
  84. Yu XF, Deng J, Yang DL, Gao Y, Gong QH, Huang XN. Total Ginsenosides suppress the neointimal hyperplasia of rat carotid artery induced by balloon injury. Vascul Pharmacol 2011;54:52-7. https://doi.org/10.1016/j.vph.2010.12.003
  85. Wang T, Yu XF, Qu SC, Xu HL, Sui DY. Ginsenoside Rb3 inhibits angiotensin II-induced vascular smooth muscle cells proliferation. Basic Clin Pharmacol Toxicol 2010;107:685-9. https://doi.org/10.1111/j.1742-7843.2010.00560.x
  86. Lozhkin A, Vendrov AE, Pan H, Wickline SA, Madamanchi NR, Runge MS. NADPH oxidase 4 regulates vascular inflammation in aging and atherosclerosis. J Mol Cell Cardiol 2017;102:10-21. https://doi.org/10.1016/j.yjmcc.2016.12.004
  87. Henning AL, McFarlin BK. Consumption of a high-fat, high-calorie meal is associated with an increase in intracellular co-localization of PPAR-gamma mRNA and protein in monocytes. Methods 2017;112:182-7. https://doi.org/10.1016/j.ymeth.2016.07.007
  88. Gan XT, Karmazyn M. Cardioprotection by ginseng: experimental and clinical evidence and underlying mechanisms. Can J Physiol Pharmacol 2018;96:859-68. https://doi.org/10.1139/cjpp-2018-0192
  89. Yin J, Zhang H, Ye J. Traditional Chinese medicine in treatment of metabolic syndrome. Endocr Metab Immune Disord Drug Targets 2008;8:99-111. https://doi.org/10.2174/187153008784534330
  90. Hong SY, Kim JY, Ahn HY, Shin JH, Kwon O. Panax ginseng extract rich in ginsenoside protopanaxatriol attenuates blood pressure elevation in spontaneously hypertensive rats by affecting the Akt-dependent phosphorylation of endothelial nitric oxide synthase. J Agric Food Chem 2012;60:3086-91. https://doi.org/10.1021/jf204447y
  91. Li L, Wang Y, Guo R, Li S, Ni J, Gao S, Gao X, Mao J, Zhu Y, Wu P, et al. Ginsenoside Rg3-loaded, reactive oxygen species-responsive polymeric nanoparticles for alleviating myocardial ischemia-reperfusion injury. J Control Release 2020;317:259-72. https://doi.org/10.1016/j.jconrel.2019.11.032
  92. Guo M, Guo G, Xiao J, Sheng X, Zhang X, Tie Y, Cheng YK, Ji X. Ginsenoside Rg3 stereoisomers differentially inhibit vascular smooth muscle cell proliferation and migration in diabetic atherosclerosis. J Cell Mol Med 2018;22:3202-14. https://doi.org/10.1111/jcmm.13601
  93. Lau WS, Chen WF, Chan RY, Guo DA, Wong MS. Mitogen-activated protein kinase (MAPK) pathway mediates the oestrogen-like activities of ginsenoside Rg1 in human breast cancer (MCF-7) cells. Br J Pharmacol 2009;156:1136-46. https://doi.org/10.1111/j.1476-5381.2009.00123.x
  94. Liu H, Wang J, Liu M, Zhao H, Yaqoob S, Zheng M, Cai D, Liu J. Antiobesity effects of ginsenoside Rg1 on 3T3-L1 preadipocytes and high fat diet-induced obese mice mediated by AMPK. Nutrients 2018;10.
  95. Lee PS, Han JY, Song TW, Sung JH, Kwon OS, Song S, Chung YB. Physicochemical characteristics and bioavailability of a novel intestinal metabolite of ginseng saponin (IH901) complexed with beta-cyclodextrin. Int J Pharm 2006;316:29-36. https://doi.org/10.1016/j.ijpharm.2006.02.035

Cited by

  1. Comparative Polyphenol Composition, Antioxidant and Anticorrosion Properties in Various Parts of Panax ginseng Extracted in Different Solvents vol.11, pp.1, 2021, https://doi.org/10.3390/app11010093
  2. Atheroprotective Effects and Mechanisms of Postmarketing Chinese Patent Formulas in Atherosclerosis Models: A Systematic Review vol.2021, 2021, https://doi.org/10.1155/2021/4010607
  3. miR-153-3p Targets βII Spectrin to Regulate Formaldehyde-Induced Cardiomyocyte Apoptosis vol.8, 2021, https://doi.org/10.3389/fcvm.2021.764831
  4. Two Key Amino Acids Variant of α-l-arabinofuranosidase from Bacillus subtilis Str. 168 with Altered Activity for Selective Conversion Ginsenoside Rc to Rd vol.26, pp.6, 2021, https://doi.org/10.3390/molecules26061733
  5. Dipterocarpus tuberculatus Roxb. Ethanol Extract Has Anti-Inflammatory and Hepatoprotective Effects In Vitro and In Vivo by Targeting the IRAK1/AP-1 Pathway vol.26, pp.9, 2021, https://doi.org/10.3390/molecules26092529
  6. Nicotine: Regulatory roles and mechanisms in atherosclerosis progression vol.151, 2021, https://doi.org/10.1016/j.fct.2021.112154
  7. MicroRNA‐302c‐3p inhibits endothelial cell pyroptosis via directly targeting NOD‐, LRR‐ and pyrin domain‐containing protein 3 in atherosclerosis vol.25, pp.9, 2021, https://doi.org/10.1111/jcmm.16500
  8. TAK1/AP-1-Targeted Anti-Inflammatory Effects of Barringtonia augusta Methanol Extract vol.26, pp.10, 2021, https://doi.org/10.3390/molecules26103053
  9. The cellular function and molecular mechanism of formaldehyde in cardiovascular disease and heart development vol.25, pp.12, 2021, https://doi.org/10.1111/jcmm.16602
  10. Expression profiles and potential roles of transfer RNA‐derived small RNAs in atherosclerosis vol.25, pp.14, 2021, https://doi.org/10.1111/jcmm.16719
  11. Korean Panax Ginseng Reduces Orthodontic Tooth Movement in Rats vol.11, pp.19, 2021, https://doi.org/10.3390/app11198856
  12. 5′-tiRNA-Cys-GCA regulates VSMC proliferation and phenotypic transition by targeting STAT4 in aortic dissection vol.26, 2021, https://doi.org/10.1016/j.omtn.2021.07.013
  13. Effect of Ginsenoside Rb2 on a Myocardial Cell Model of Coronary Heart Disease through Nrf2/HO-1 Signaling Pathway vol.45, pp.1, 2022, https://doi.org/10.1248/bpb.b21-00525
  14. Characteristics of Black Ginseng (Panax ginseng C.A. Mayer) Production Using Ginseng Stored at Low Temperature after Harvest vol.11, pp.2, 2021, https://doi.org/10.3390/metabo11020098