DOI QR코드

DOI QR Code

The antioxidant activities of Korean Red Ginseng (Panax ginseng) and ginsenosides: A systemic review through in vivo and clinical trials

  • Park, Soo Kyung (Laboratory of Efficacy Research, Korea Ginseng Corporation) ;
  • Hyun, Sun Hee (Laboratory of Efficacy Research, Korea Ginseng Corporation) ;
  • In, Gyo (Laboratory of Efficacy Research, Korea Ginseng Corporation) ;
  • Park, Chae-Kyu (Laboratory of Efficacy Research, Korea Ginseng Corporation) ;
  • Kwak, Yi-Seong (Laboratory of Efficacy Research, Korea Ginseng Corporation) ;
  • Jang, Young-Jin (College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University) ;
  • Kim, Bumseok (College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University) ;
  • Kim, Jong-Hoon (College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University) ;
  • Han, Chang-Kyun (Laboratory of Efficacy Research, Korea Ginseng Corporation)
  • Received : 2020.07.30
  • Accepted : 2020.09.29
  • Published : 2021.01.15

Abstract

A wide range of studies have steadily pointed out the relation of oxidative stress to the primary and secondary causes of human disease and aging. As such, there have been multiple misconceptions about oxidative stress. Most of reactive oxygen species (ROS) generated from chronic diseases cause oxidative damage to cell membrane lipids and proteins. ROS production is increased by abnormal stimulation inside and outside in the body, and even though ROS are generated in cells in response to abnormal metabolic processes such as disease, it does not mean that they directly contribute to the pathogenesis of a disease. Therefore, the focus of treatment should not be on ROS production itself but on the prevention and treatment of diseases linked to ROS production, including types 1 and 2 diabetes, cancer, heart disease, schizophrenia, Parkinson's disease, and Alzheimer's disease. In this regard, Korean Red Ginseng (KRG) has been traditionally utilized to help prevent and treat diseases such as diabetes, cancer, inflammation, nervous system diseases, cardiovascular disease, and hyperlipidemia. Therefore, this review was intended to summarize in vivo animal and human clinical studies on the antioxidant activities of KRG and its components, ginsenosides.

Keywords

References

  1. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003;552(Pt 2):335-44. https://doi.org/10.1113/jphysiol.2003.049478
  2. Pillai CK, Pillai KS. Antioxidants in health. Indian J Physiol Pharmacol 2002;46(1):1-5.
  3. Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm J 2016;24(5):547-53. https://doi.org/10.1016/j.jsps.2015.03.013
  4. Warner DS, Sheng H, Batinic-Haberle I. Oxidants, antioxidants and the ischemic brain. J Exp Biol 2004;207(Pt 18):3221-31. https://doi.org/10.1242/jeb.01022
  5. So SH, Lee JW, Kim YS, Hyun SH, Jan CK. Red ginseng monograph. J Ginseng Res 2018;42(4):549-61. https://doi.org/10.1016/j.jgr.2018.05.002
  6. Zielinski ZAM, Pratt DA. Lipid peroxidation: kinetics, mechanisms, and products. J Org Chem 2017;82(6):2817-25. https://doi.org/10.1021/acs.joc.7b00152
  7. Zhang JT, Qu ZW, Liu Y, Deng HL. Preliminary study on antiamnestic mechanism of ginsenoside Rg1 and Rb1. Chin Med J (Engl) 1990;103(11):932-8.
  8. Deng HL, Zhang JT. Anti-lipid peroxilative effect of ginsenoside Rb1 and Rg1. Chin Med J (Engl) 1991;104(5):395-8.
  9. Jung J, Jang HJ, Eom SJ, Choi NS, Lee NK, Paik HD. Fermentation of red ginseng extract by the probiotic Lactobacillus plantarum KCCM 11613P: ginsenoside conversion and antioxidant effects. J Ginseng Res 2019;43:20-6. https://doi.org/10.1016/j.jgr.2017.07.004
  10. Kim JS, Nam K, Shim KH, Kim KW, Im KS, Chung HY. Antioxidative mechanism of total saponin of red ginseng. Korean J Life Sci 1996;6(1):48-55.
  11. Sung KS, Chun C, Kwon YH, Kim KH, Chang CC. Effects of red ginseng component on the antioxidative enzymes activities and lipid peroxidation in the liver of mice. J Ginseng Res 2000;24:29-34.
  12. Sanchez-Valle V, Chavez-Tapia NC, Uribe M, Mendez-Sanchez N. Role of oxidative stress and molecular changes in liver fibrosis: a review. Curr Med Chem 2012;19(28):4850-60. https://doi.org/10.2174/092986712803341520
  13. Al-Yahya M, Mothana R, Al-Said M, Al-Dosari M, Al-Musayeib N, Al-Sohaibani M, Parvez MK, Syed Rafatullah. Attenuation of CCl4-induced oxidative stress and hepatonephrotoxicity by Saudi Sidr honey in rats. Evid Based Complement Alternat Med 2013;2013:569037.
  14. Wee JJ, Heo JN, Kim MW, Kang DY. Protective effect of Korean red ginseng against oxidative damage by carbon tetrachloride in rat. Korean J Ginseng Sci 1996;20:154-8.
  15. El Denshary ES, Al-Gahazali MA, Mannaa FA, Salem HA, Hassan NS, AbdelWahhab MA. Dietary honey and ginseng protect against carbon tetrachlorideinduced hepatonephrotoxicity in rats. Exp Toxicol Pathol 2012;64(7-8):753-60. https://doi.org/10.1016/j.etp.2011.01.012
  16. Kim H, Lee YH, Kim SI. Antihepatotoxic components of Korean ginseng: effect on lipid peroxidation. Korean Biochem J 1989;22:12-8.
  17. Lee CK, Kim NY, Han YN, Choi J. Effects of pretreated Korean red ginseng on carbon tetrachloride and galactosamine-induced hepatotoxicity in rats. J Ginseng Res 2003;27:1-10. https://doi.org/10.5142/JGR.2003.27.1.001
  18. Jaeschke H, Ramachandran A. Oxidant stress and lipid peroxidation in acetaminophen hepatotoxicity. React Oxyg Species (Apex) 2018;5(15):145-58.
  19. Saba E, Lee YY, Kim M, Kim SH, Hong SB, Rhee MH. A comparative study on immune-stimulatory and antioxidant activities of various types of ginseng extracts in murine and rodent models. J Ginseng Res 2018;42(4):577-84. https://doi.org/10.1016/j.jgr.2018.07.004
  20. Seong GS, Chun SG, Chang CC. Hepatoprotective effects of white and red ginseng extracts of acetaminophen-induced hepatotoxicity in mice. J Ginseng Res 2005;29:131-7. https://doi.org/10.5142/JGR.2005.29.3.131
  21. Kim YS, Kim YH, Noh JR, Cho ES, Park JH, Son HY. Protective effect of Korean red ginseng against aflatoxin B1-induced hepatotoxicity in rat. J Ginseng Res 2011;35(2):243-9. https://doi.org/10.5142/jgr.2011.35.2.243
  22. Abdelfattah-Hassan A, Shalaby SI, Khater SI, El-Shertry ES, Fadil HAE, Elsayed SA. Panax ginseng is superior to vitamin E as a hepatoprotector against cyclophosphamide-induced liver damage. Complement Ther Med 2019;46:95-102. https://doi.org/10.1016/j.ctim.2019.08.005
  23. Kim H, Hong MK, Choi H, Moon HS, Lee HJ. Chemopreventive effects of Korean red ginseng extract on rat hepatocarcinogenesis. J Cancer 2015;6(1):1-8. https://doi.org/10.7150/jca.10353
  24. Wu D, Cederbaum AI. Alcohol, oxidative stress, and free radical damage. Alcohol Res Health 2003;27(4):277-84.
  25. Lee CK, Choi JW, Kim SH, Kim H, Han YN. Biological activity of acidic polysaccharide of Korean red ginseng I.-Effects on alcohol detoxification system in the liver of alcohol-intoxicated rats. J Ginseng Res 1998;22:260-6.
  26. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010;107(9):1058-70. https://doi.org/10.1161/CIRCRESAHA.110.223545
  27. Ryu JK, Lee T, Kim DJ, Park IS, Yoon SM, Lee HS, Song SU, Suh JK. Free radicalscavenging activity of Korean red ginseng for erectile dysfunction in noninsulin-dependent diabetes mellitus rats. Urology 2005;65(3):611-5. https://doi.org/10.1016/j.urology.2004.10.038
  28. Jung CH, Seog HM, Choi IW, Choi HD, Cho HY. Effects of wild ginseng (Panax ginseng C.A. Meyer) leaves on lipid peroxidation levels and antioxidant enzyme activities in streptozotocin diabetic rats. J Ethnopharmacol 2005;98(3):245-50. https://doi.org/10.1016/j.jep.2004.12.030
  29. Cho WC, Chung WS, Lee SK, Leung AW, Cheng CH, Yue KK. Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats. Eur J Pharmacol 2006;550(1-3):173-9. https://doi.org/10.1016/j.ejphar.2006.08.056
  30. Lim SW, Jin L, Luo K, Jin J, Yang CW. Ginseng extract reduces tacrolimusinduced oxidative stress by modulating autophagy in pancreatic beta cells. Lab Invest 2017;97(11):1271-81. https://doi.org/10.1038/labinvest.2017.75
  31. Krata N, Zagozdzon R, ForoncewicZ B, Mucha K. Oxidative stress in kidney diseases: the cause or the consequence? Arch Immunol Ther Exp (Warsz) 2018;66(3):211-20. https://doi.org/10.1007/s00005-017-0496-0
  32. Yokozawa T, Liu ZW, Dong E. A study of ginsenoside-Rd in a renal ischemiareperfusion model. Nephron 1998;78(2):201-6. https://doi.org/10.1159/000044911
  33. Yokozawa T, Liu ZW. The role of ginsenoside-Rd in cisplatin-induced acute renal failure. Ren Fail 2000;22(2):115-27. https://doi.org/10.1081/JDI-100100858
  34. Sayre LM, Perry G, Smith MA. Oxidative stress and neurotoxicity. Chem Res Toxicol 2008;21(1):172-88. https://doi.org/10.1021/tx700210j
  35. Dinis-Oliveira RJ, Duarte JA, Sanchez-Navarro A, Remiao F, Bastos ML, Carvalho F. Paraquat poisonings: mechanisms of lung toxicity, clinical features, and treatment. Crit Rev Toxicol 2008;38(1):13-71. https://doi.org/10.1080/10408440701669959
  36. Somayajulu-Nitu M, Sandhu JK, Cohen J, Sikorska M, Sridhar TS, Matei A, Borowy-Borowski H, Pandey S. Paraquat induces oxidative stress, neuronal loss in substantia nigra region and parkinsonism in adult rats: neuroprotection and amelioration of symptoms by water-soluble formulation of coenzyme Q10. BMC Neurosci 2009;10:88. https://doi.org/10.1186/1471-2202-10-88
  37. Liou HH, Chen RC, Tsai YF, Chen WP, Chang YC, Tsai MC. Effects of paraquat on the substantia nigra of the wistar rats: neurochemical, histological, and behavioral studies. Toxicol Appl Pharmacol 1996;137(1):34-41. https://doi.org/10.1006/taap.1996.0054
  38. Liou HH, Tsai MC, Chen CJ, Jeng JS, Chang YC, Chen SY, Chen RC. Environmental risk factors and Parkinson's disease: a case-control study in Taiwan. Neurology 1997;48(6):1583-8. https://doi.org/10.1212/WNL.48.6.1583
  39. Morano A, Jimenez-Jimenez FJ, Molina JA, Antolin MA. Risk-factors for Parkinson's disease: case-control study in the province of Caceres, Spain. Acta Neurol Scand 1994;89(3):164-70. https://doi.org/10.1111/j.1600-0404.1994.tb01655.x
  40. Thiruchelvam M, McCormack A, Richfield EK, Baggs RB, Tank AW, Di Monte DA, Cory-Slechta DA. Age-related irreversible progressive nigrostriatal dopaminergic neurotoxicity in the paraquat and maneb model of the Parkinson's disease phenotype. Eur J Neurosci 2003;18(3):589-600. https://doi.org/10.1046/j.1460-9568.2003.02781.x
  41. Lee JJ. Antioxidant effects of Korean red ginseng extracts on the glutathione and lipid peroxidation in the liver of mouse treated with paraquat. Korean J Biomed Lab Sci 2000;6:45-53.
  42. Hamid I, Kim SK, Cha KM, Jeong MS, Prachetash G, Rhee DK. Korean Red Ginseng alleviates neuroinflammation and promotes cell survival in the intermittent heat stress-induced rat brain by suppressing oxidative stress via estrogen receptor beta and brain-derived neurotrophic factor upregulation. J Ginseng Res 2020;44:593-602. https://doi.org/10.1016/j.jgr.2019.05.007
  43. Kim DH, Kim DW, Jung BH, Lee JH, Heesu Lee H, Hwang GS, Sung Ki, Kang KS, Lee JW. Ginsenoside Rb2 suppresses the glutamate-mediated oxidative stress and neuronal cell death in HT22 cells. J Ginseng Res 2019;43:326-34. https://doi.org/10.1016/j.jgr.2018.12.002
  44. Chen XC, Zhou YC, Chen Y, Zhu YG, Fang F, Chen LM. Ginsenoside Rg1 reduces MPTP-induced substantia nigra neuron loss by suppressing oxidative stress. Acta Pharmacol Sin 2005;26(1):56-62. https://doi.org/10.1111/j.1745-7254.2005.00019.x
  45. Ban JY, Kang SW, Lee JS, Chung JH, Ko YG, Choi HS. Korean red ginseng protects against neuronal damage induced by transient focal ischemia in rats. Exp Ther Med 2012;3(4):693-8. https://doi.org/10.3892/etm.2012.449
  46. Lim KH, Cho JY, Kim B, Bae BS, Kim JH. Red ginseng (Panax ginseng) decreases isoproterenol-induced cardiac injury via antioxidant properties in porcine. J Med Food 2014;17(1):111-8. https://doi.org/10.1089/jmf.2013.2768
  47. Cui H, Kong Y, Zhang H. Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct 2012;2012:646354. https://doi.org/10.1155/2012/646354
  48. Yokozawa T, Satoh A, Cho EJ. Ginsenoside-Rd attenuates oxidative damage related to aging in senescence-accelerated mice. J Pharm Pharmacol 2004;56(1):107-13. https://doi.org/10.1211/0022357022449
  49. Oh MH, Chung HY, Young HS, Kim KW, Chung HY, Oura H, Yokozawa T. Effects of ginsenoside Rb2 on the antioxidants in SAM-R/1 mice. Korean Biochem J 1992;25:492-7.
  50. Kim KH, Sung KS, Chang CC. Effects of the antioxidative components to ginsenoside in the liver of 40-week-old mice. J Ginseng Res 2000;24:162-7.
  51. Ramesh T, Kim SW, Hwang SY, Sohn SH, Yoo SK, Kim SK. Panax ginseng reduces oxidative stress and restores antioxidant capacity in aged rats. Nutr Res 2012;32(9):718-26. https://doi.org/10.1016/j.nutres.2012.08.005
  52. Kopalli SR, Hwang SY, Won YJ, Kim SW, Cha KM, Han CK, Hong JY, Kim SK. Korean red ginseng extract rejuvenates testicular ineffectiveness and sperm maturation process in aged rats by regulating redox proteins and oxidative defense mechanisms. Exp Gerontol 2015;69:94-102. https://doi.org/10.1016/j.exger.2015.05.004
  53. Kim DJ, Chang CC. The effects of red ginseng extracts of antioxidant enzyme activities and lipid peroxidation of the kidney in g-postirradiated mice. Korean J Ginseng Sci 1994;18:25-31.
  54. Kim DY, Chang JC. Radioprotective effect of ginseng components on antioxidant enzymes, glutathione and lipid peroxidation of liver in g-irradiated mice. Korean J Ginseng Sci 1998;22:1-10.
  55. Jeon BH, Seong GS, Chun SG, Sung JH, Chang CC. Antioxidative effects of white ginseng and red ginseng on liver of high fat diet-treated mice. J Ginseng Res 2005;29:138-44. https://doi.org/10.5142/JGR.2005.29.3.138
  56. Song YB, Kwak YS, Park KH, Chang SK. Effect of total saponin from red ginseng on activities of antioxidant enzymes in pregnant rats. J Ginseng Res 2002;26: 139-44. https://doi.org/10.5142/JGR.2002.26.3.139
  57. Kim SH, Park KS, Chang MJ, Sung JH. Effects of Panax ginseng extract on exercise-induced oxidative stress. J Sports Med Phys Fitness 2005;45(2):178-82.
  58. Kim SH, Park KS. Effects of Panax ginseng extract on lipid metabolism in humans. Pharmacol Res 2003;48(5):511-3. https://doi.org/10.1016/S1043-6618(03)00189-0
  59. Kim HG, Yoo SR, Park HJ, Lee NH, Shin JW, Sathyanath R, Cho JH, Son CG. Antioxidant effects of Panax ginseng C.A. Meyer in healthy subjects: a randomized, placebo-controlled clinical trial. Food Chem Toxicol 2011;49(9): 2229-35. https://doi.org/10.1016/j.fct.2011.06.020
  60. Lee BM, Lee SK, Kim HS. Inhibition of oxidative DNA damage, 8-OHdG, and carbonyl contents in smokers treated with antioxidants (vitamin E, vitamin C, beta-carotene and red ginseng). Cancer Lett 1998;132(1-2):219-27. https://doi.org/10.1016/S0304-3835(98)00227-4
  61. Seo SK, Hong Y, Yun BH, Chon SJ, Jung YS, Park JH, Cho SH, Choi YS, Lee BS. Antioxidative effects of Korean red ginseng in postmenopausal women: a double-blind randomized controlled trial. J Ethnopharmacol 2014;154(3):
  62. Kawamura T, Muraoka I. Exercise-induced oxidative stress and the effects of antioxidant intake from a physiological viewpoint. Antioxidants (Basel) 2018;7(9).
  63. Choi J, Kim Y, Lee KM, Kim HJ. The effects of red-ginseng intaking on free radical produced during aerobic exercise in the elderly. J Ginseng Res 2004;28:27-32. https://doi.org/10.5142/JGR.2004.28.1.027
  64. Lee CM, Kim RT. Effects of the red-ginseng administration on the antioxidant enzyme and malondialdehyde following exercise. Exerc Sci 1999;8:473-83.
  65. Park HS, Kim SK. The effect of aerobic exercise training and taking Red Panax Ginseng on antioxidant enzymes and lipid superoxides in diabetics. J Sport Leisure Stud 2004;22:471-84. https://doi.org/10.51979/KSSLS.2004.11.22.471
  66. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, et al. Oxidative stress, aging, and diseases. Clin Interv Aging 2018;13:757-72. https://doi.org/10.2147/CIA.S158513

Cited by

  1. Shenxian-Shengmai Oral Liquid Improves Sinoatrial Node Dysfunction through the PKC/NOX-2 Signaling Pathway vol.2021, 2021, https://doi.org/10.1155/2021/5572140
  2. Antioxidant Effect and Sensory Evaluation of Yogurt Supplemented with Hydroponic Ginseng Root Extract vol.10, pp.3, 2021, https://doi.org/10.3390/foods10030639
  3. Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial vol.12, pp.2, 2021, https://doi.org/10.1007/s13167-021-00243-4
  4. Inhibition of Angiotensin-I Converting Enzyme by Ginsenosides: Structure-Activity Relationships and Inhibitory Mechanism vol.69, pp.21, 2021, https://doi.org/10.1021/acs.jafc.1c01231
  5. Effect of Korean Red Ginseng on Plasma Ceramide Levels in Postmenopausal Women with Hypercholesterolemia: A Pilot Randomized Controlled Trial vol.11, pp.7, 2021, https://doi.org/10.3390/metabo11070417
  6. Antioxidant Activity and Inhibitory Effect on Nitric Oxide Production of Hydroponic Ginseng Fermented with Lactococcus lactis KC24 vol.10, pp.10, 2021, https://doi.org/10.3390/antiox10101614
  7. Korean Panax Ginseng Reduces Orthodontic Tooth Movement in Rats vol.11, pp.19, 2021, https://doi.org/10.3390/app11198856
  8. Network Pharmacology of Ginseng (Part II): The Differential Effects of Red Ginseng and Ginsenoside Rg5 in Cancer and Heart Diseases as Determined by Transcriptomics vol.14, pp.10, 2021, https://doi.org/10.3390/ph14101010
  9. The promising therapeutic potentials of ginsenosides mediated through p38 MAPK signaling inhibition vol.7, pp.11, 2021, https://doi.org/10.1016/j.heliyon.2021.e08354
  10. Bioconversion of Ginsenosides in American Ginseng Extraction Residue by Fermentation with Ganoderma lucidum Improves Insulin-like Glucose Uptake in 3T3-L1 Adipocytes vol.7, pp.4, 2021, https://doi.org/10.3390/fermentation7040297
  11. Ginsenosides Conversion and Anti-Oxidant Activities in Puffed Cultured Roots of Mountain Ginseng vol.9, pp.12, 2021, https://doi.org/10.3390/pr9122271
  12. Ginseng root extract attenuates inflammation by inhibiting the MAPK/NF-κB signaling pathway and activating autophagy and p62-Nrf2-Keap1 signaling in vitro and in vivo vol.283, 2022, https://doi.org/10.1016/j.jep.2021.114739
  13. Oleanolic Acid Alleviates Cerebral Ischemia/Reperfusion Injury via Regulation of the GSK-3β/HO-1 Signaling Pathway vol.15, pp.1, 2022, https://doi.org/10.3390/ph15010001