DOI QR코드

DOI QR Code

Glycosyltransformation of ginsenoside Rh2 into two novel ginsenosides using recombinant glycosyltransferase from Lactobacillus rhamnosus and its in vitro applications

  • Wang, Dan-Dan (School of Life Sciences, Yantai University) ;
  • Kim, Yeon-Ju (Department of Oriental Medicinal Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University) ;
  • Baek, Nam In (Department of Oriental Medicinal Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University) ;
  • Mathiyalagan, Ramya (Graduate School of Biotechnology, College of Life Science, Kyung Hee University) ;
  • Wang, Chao (Department of Oriental Medicinal Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University) ;
  • Jin, Yan (Department of Oriental Medicinal Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University) ;
  • Xu, Xing Yue (Graduate School of Biotechnology, College of Life Science, Kyung Hee University) ;
  • Yang, Deok-Chun (Department of Oriental Medicinal Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University)
  • Received : 2018.07.02
  • Accepted : 2019.11.01
  • Published : 2021.01.15

Abstract

Background: Ginsenoside Rh2 is well known for many pharmacological activities, such as anticancer, antidiabetes, antiinflammatory, and antiobesity properties. Glycosyltransferases (GTs) are ubiquitous enzymes present in nature and are widely used for the synthesis of oligosaccharides, polysaccharides, glycoconjugates, and novel derivatives. We aimed to synthesize new ginsenosides from Rh2 using the recombinant GT enzyme and investigate its cytotoxicity with diverse cell lines. Methods: We have used a GT gene with 1,224-bp gene sequence cloned from Lactobacillus rhamnosus (LRGT) and then expressed in Escherichia coli BL21 (DE3). The recombinant GT protein was purified and demonstrated to transform Rh2 into two novel ginsenosides, and they were characterized by nuclear magnetic resonance (NMR) techniques and evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assay. Results: Two novel ginsenosides with an additional glucopyranosyl (6→1) and two additional glucopyranosyl (6→1) linked with the C-3 position of the substrate Rh2 were synthesized, respectively. Cell viability assay in the lung cancer (A549) cell line showed that glucosyl ginsenoside Rh2 inhibited cell viability more potently than ginsenoside Rg3 and Rh2 at a concentration of 10 μM. Furthermore, glucosyl ginsenoside Rh2 did not exhibit any cytotoxic effect in murine macrophage cells (RAW264.7), mouse embryo fibroblasts cells (3T3-L1), and skin cells (B16BL6) at a concentration of 10 μM compared with ginsenoside Rh2 and Rg3. Conclusion: This is the first report on the synthesis of two novel ginsenosides, namely, glucosyl ginsenoside Rh2 and diglucosyl ginsenoside Rh2 from Rh2 by using recombinant GT isolated from L. rhamnosus. Moreover, diglucosyl ginsenoside Rh2 might be a new candidate for treatment of inflammation, obesity, and skin whiting, and especially for anticancer.

Keywords

References

  1. Kim YJ, Jeon JN, Jang MG, Oh JY, Kwon WS, Jung SK, Yang DC. Ginsenoside profiles and related gene expression during foliation in Panax ginseng Meyer. J Ginseng Res 2014;38:66-72. https://doi.org/10.1016/j.jgr.2013.11.001
  2. Radad K, Gille G, Liu L, Rausch WD. Use of ginseng in medicine with emphasis on neurodegenerative disorders. J Pharmacol Sci 2006;100:175-86. https://doi.org/10.1254/jphs.CRJ05010X
  3. Leung KW, Wong AS-T. Pharmacology of ginsenosides: a literature review. Chin Med 2010;5:20. https://doi.org/10.1186/1749-8546-5-20
  4. Park EJ, Yi J, Chung KH, Ryu DY, Choi J, Park K. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 2008;180:222-9. https://doi.org/10.1016/j.toxlet.2008.06.869
  5. Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin 2008;29:1109-18. https://doi.org/10.1111/j.1745-7254.2008.00869.x.
  6. Geourjon C, Deleage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 1995;11:681-4.
  7. Quan LH, Min JW, Yang DU, Kim YJ, Yang DC. Enzymatic biotransformation of ginsenoside Rb1 to 20 (S)-Rg3 by recombinant β-glucosidase from Microbacterium esteraromaticum. Appl Microbiol Biotechnol 2012;94:377-84. https://doi.org/10.1007/s00253-011-3861-7
  8. Zhang Q, Hong B, Wu S, Niu T. Inhibition of prostatic cancer growth by ginsenoside Rh2. Tumor Biol 2015;36:2377-81. https://doi.org/10.1007/s13277-014-2845-5
  9. Chae S, Kang KA, Chang WY, Kim MJ, Lee SJ, Lee YS, Kim HS, Kim DH, Hyun JW. Effect of compound K, a metabolite of ginseng saponin, combined with γ-ray radiation in human lung cancer cells in vitro and in vivo. J Agric Food Chem 2009;57:5777-82. https://doi.org/10.1021/jf900331g
  10. Fu BD, Bi WY, He CL, Zhu W, Shen HQ, Yi PF, Wang L, Wang DC, Wei XB. Sulfated derivatives of 20 (S)-ginsenoside Rh2 and their inhibitory effects on LPS-induced inflammatory cytokines and mediators. Fitoterapia 2013;84: 303-7. https://doi.org/10.1016/j.fitote.2012.12.021
  11. Li L, Chen X, Zhou J, Zhong D. In vitro studies on the oxidative metabolism of 20 (s)-ginsenoside Rh2 in human, monkey, dog, rat, and mouse liver microsomes, and human liver s9. Drug Metab and Dispos 2012;40:2041-53. https://doi.org/10.1124/dmd.112.046995
  12. Chung KS, Cho SH, Shin JS, Kim DH, Choi JH, Choi SY, Rhee YK, Hong HD, Lee KT. Ginsenoside Rh2 induces cell cycle arrest and differentiation in human leukemia cells by upregulating TGF-β expression. Carcinogenesis 2013;34: 331-40. https://doi.org/10.1093/carcin/bgs341
  13. Ahn S, Siddiqi MH, Noh H-Y, Kim Y-J, Kim Y-J, Jin C-G, Yang D-C. Anti-inflammatory activity of ginsenosides in LPS-stimulated RAW 264.7 cells. Sci Bull 2015;60:773-84. https://doi.org/10.1007/s11434-015-0773-4
  14. Mathiyalagan R, Subramaniyam S, Kim YJ, Kim YC, Yang DC. Ginsenoside compound K-bearing glycol chitosan conjugates: synthesis, physicochemical characterization, and in vitro biological studies. Carbohydr Polym 2014;112: 359-66. https://doi.org/10.1016/j.carbpol.2014.05.098
  15. Mathiyalagan R, Kim YH, Kim YJ, Kim MK, Kim MJ, Yang DC. Enzymatic formation of novel ginsenoside Rg1-α-glucosides by rat intestinal homogenates. Appl Biochem Biotechnol 2015;177:1701-15. https://doi.org/10.1007/s12010-015-1847-0
  16. Wang HP, Zhang YB, Yang XW, Zhao DQ, Wang YP. Rapid characterization of ginsenosides in the roots and rhizomes of Panax ginseng by UPLC-DAD-QTOF-MS/MS and simultaneous determination of 19 ginsenosides by HPLC-ESI-MS. J Ginseng Res 2016;40:382-94. https://doi.org/10.1016/j.jgr.2015.12.001
  17. Ye H, Wu Q, Zhu Y, Guo C, Zheng X. Ginsenoside Rh2 alleviates dextran sulfate sodium-induced colitis via augmenting TGFb signaling. Mol Biol Rep 2014;41:5485-90. https://doi.org/10.1007/s11033-014-3422-0
  18. Choi S, Kim TW, Singh SV. Ginsenoside Rh2-mediated G1 phase cell cycle arrest in human breast cancer cells is caused by p15 Ink4B and p27 Kip1-dependent inhibition of cyclin-dependent kinases. Pharm Res 2009;26:2280-8. https://doi.org/10.1007/s11095-009-9944-9
  19. Kikuchi Y, Sasa H, Kita T, Hirata J, Tode T, Nagata I. Inhibition of human ovarian cancer cell proliferation in vitro by ginsenoside Rh2 and adjuvant effects to cisplatin in vivo. Anti-cancer Drugs 1991;2:63-8. https://doi.org/10.1097/00001813-199102000-00009
  20. Li B, Zhao J, Wang CZ, Searle J, He TC, Yuan CS, Du W. Ginsenoside Rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53. Cancer Lett 2011;301:185-92. https://doi.org/10.1016/j.canlet.2010.11.015
  21. Liu J, Shimizu K, Yu H, Zhang C, Jin F, Kondo R. Stereospecificity of hydroxyl group at C-20 in antiproliferative action of ginsenoside Rh2 on prostate cancer cells. Fitoterapia 2010;81:902-5. https://doi.org/10.1016/j.fitote.2010.05.020
  22. Nakata H, Kikuchi Y, Tode T, Hirata J, Kita T, Ishii K, Kudoh K, Nagata I, Shinomiya N. Inhibitory effects of ginsenoside Rh2 on tumor growth in nude mice bearing human ovarian cancer cells. Jpn J Cancer Res 1998;89:733-40. https://doi.org/10.1111/j.1349-7006.1998.tb03278.x
  23. Tang XP, Tang GD, Fang CY, Liang ZH, Zhang LY. Effects of ginsenoside Rh2 on growth and migration of pancreatic cancer cells. World J Gastroenterol 2013;19:1582-92. https://doi.org/10.3748/wjg.v19.i10.1582
  24. Tode T, Kikuchi Y, Kita T, Hirata J, Imaizumi E, Nagata I. Inhibitory effects by oral administration of ginsenoside Rh2 on the growth of human ovarian cancer cells in nude mice. J Cancer Res Clin Oncol 1993;120:24-6. https://doi.org/10.1007/BF01200720
  25. Shi J, Cao B, Zha WB, Wu XL, Liu LS, Xiao WJ, Gu RR, Sun RB, Yu XY, Zheng T. Pharmacokinetic interactions between 20 (S)-ginsenoside Rh2 and the HIV protease inhibitor ritonavir in vitro and in vivo. Acta Pharmacol Sin 2013;34:1349-58. https://doi.org/10.1038/aps.2013.69
  26. Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL Workspace: a webbased environment for protein structure homology modelling. Bioinformatics 2006;22:195-201. https://doi.org/10.1093/bioinformatics/bti770
  27. Hu Y, Walker S. Remarkable structural similarities between diverse glycosyltransferases. Chem Biol 2002;9:1287-96. https://doi.org/10.1016/S1074-5521(02)00295-8
  28. Taniguchi N, Honke K, Fukuda M. Handbook of glycosyltransferases and related genes. Springer Science & Business Media; 2011.
  29. Coutinho PM, Deleury E, Davies GJ, Henrissat B. An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 2003;328:307-17. https://doi.org/10.1016/S0022-2836(03)00307-3
  30. Tarbouriech N, Charnock SJ, Davies GJ. Three-dimensional structures of the Mn and Mg dTDP complexes of the family GT-2 glycosyltransferase SpsA: a comparison with related NDP-sugar glycosyltransferases. J Mol Biol 2001;314: 655-61. https://doi.org/10.1006/jmbi.2001.5159
  31. Mackenzie PI, Bock KW, Burchell B, Guillemette C, Ikushiro Si, Iyanagi T, Miners JO, Owens IS, Nebert DW. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics 2005;15:677-85. https://doi.org/10.1097/01.fpc.0000173483.13689.56
  32. Bowles D, Lim E-K, Poppenberger B, Vaistij FE. Glycosyltransferases of lipophilic small molecules. Annu Rev Plant Biol 2006;57:567-97. https://doi.org/10.1146/annurev.arplant.57.032905.105429
  33. Yan X, Fan Y, Wei W, Wang P, Liu Q, Wei Y, Zhang L, Zhao G, Yue J, Zhou Z. Production of bioactive ginsenoside compound K in metabolically engineered yeast. Cell Res 2014;24:770-3. https://doi.org/10.1038/cr.2014.28
  34. Pandey RP, Li TF, Kim EH, Yamaguchi T, Park YI, Kim JS, Sohng JK. Enzymatic synthesis of novel phloretin glucosides. Appl Environ Microbiol 2013;79: 3516-21. https://doi.org/10.1128/AEM.00409-13
  35. Liang HC, Wang QH, Gong T, Du GH, Yang JL, Zhu P. The basic strategies and research advances in the studies on glycosyltransferases involved in ginsenoside biosynthesis. Acta Pharm Sin 2015;50:148-53.
  36. Dai L, Liu C, Li J, Dong C, Yang J, Dai Z, Zhang X, Sun Y. One-pot synthesis of ginsenoside Rh2 and bioactive unnatural ginsenoside by coupling promiscuous glycosyltransferase from Bacillus subtilis 168 to sucrose synthase. J Agric Food Chem 2018;66:2830-7. https://doi.org/10.1021/acs.jafc.8b00597
  37. Chen M, Ni L, Zhao X, Niu X. The inhibition of 20 (R)-ginsenoside Rg3 on the expressions of angiogenesis factors proteins in human lung adenocarcinoma cell line A549 and HUVEC304 cell. Zhongguo Zhong Yao Za Zhi 2005;30:357-60.
  38. Lee SJ, Lee WJ, Chang SE, Lee G-Y. Antimelanogenic effect of ginsenoside Rg3 through extracellular signal-regulated kinase-mediated inhibition of microphthalmia-associated transcription factor. J Ginseng Res 2015;39:238-42. https://doi.org/10.1016/j.jgr.2015.01.001
  39. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A. In: John MW, editor. The proteomics protocols handbook, protein identification and analysis tools on the ExPASy server. Humana Press; 2005. p. 571-607.
  40. Kant R, Rintahaka J, Yu X, Sigvart-Mattila P, Paulin L, Mecklin J-P, Saarela M, Palva A, Ossowski I. A comparative pan-genome perspective of Niche-adaptable cell-surface protein phenotypes in Lactobacillus rhamnosus. PLOS ONE 2014;9(7). https://doi.org/10.1371/journal.pone.0102762. -102762.
  41. Wang DD, Jin Y, Wang C, Kim YJ, Perez ZEJ, Baek NI, Mathiyalagan R, Markus J, Yang DC. Rare ginsenoside Ia synthesized from F1 by cloning and over-expression of the UDP-glycosyltransferase gene from Bacillus subtilis: synthesis, characterization, and in vitro melanogenesis inhibition activity in BL6B16 cells. J Ginseng Res 2018;42:42-9. https://doi.org/10.1016/j.jgr.2016.12.009
  42. Thompson JD, Gibson T, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics 2002;6:2-3.
  43. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 2009;37:202-8.
  44. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 2013;30:2725-9. https://doi.org/10.1093/molbev/mst197
  45. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982;157:105-32. https://doi.org/10.1016/0022-2836(82)90515-0
  46. Jacobsen CN, Rosenfeldt Nielsen V, Hayford AE, Moller PL, Michaelsen KF, Pærregaard A, Sandstrom B, Tvede M, Jakobsen M. Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol 1999;65:4949-56. https://doi.org/10.1128/aem.65.11.4949-4956.1999
  47. Bertazzoni Minelli E, Benini A, Marzotto M, Sbarbati A, Ruzzenente O, Ferrario R, Hendrinks H, Dellaglio F. Assessment of novel probiotic Lactobacillus casei strains for the production of functional dairy foods. Int Dairy J 2004;14:723-36. https://doi.org/10.1016/j.idairyj.2004.01.007
  48. Luo HM, Sun C, Sun YZ, Wu Q, Li Y, Song JY, Niu YY, Cheng X, Xu HX, Li CY, et al. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponinebiosynthetic genes and genetic markers. BMC Genom 2011;12:S5. https://doi.org/10.1186/1471-2164-12-S5-S5.
  49. Li S, Gao Y, Ma W, Guo W, Zhou G, Cheng T, Liu Y. EGFR signaling-dependent inhibition of glioblastoma growth by ginsenoside Rh2. Tumor Biol 2014;35:5593-8. https://doi.org/10.1007/s13277-014-1739-x
  50. Liu S, Chen M, Li P, Wu Y, Chang C, Qiu Y, Cao L, Liu Z, Jia C. Ginsenoside rh2 inhibits cancer stem-like cells in skin squamous cell carcinoma. Cellular Physiol Biochem 2015;36:499-508. https://doi.org/10.1159/000430115

Cited by

  1. Preparation of Polyethylene Glycol-Ginsenoside Rh1 and Rh2 Conjugates and Their Efficacy against Lung Cancer and Inflammation vol.24, pp.23, 2019, https://doi.org/10.3390/molecules24234367
  2. Diversity of Ginsenoside Profiles Produced by Various Processing Technologies vol.25, pp.19, 2020, https://doi.org/10.3390/molecules25194390