DOI QR코드

DOI QR Code

Korean Red Ginseng suppresses bisphenol A-induced expression of cyclooxygenase-2 and cellular migration of A549 human lung cancer cell through inhibition of reactive oxygen species

  • Song, Heewon (Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University) ;
  • Lee, Yong Yook (The Korean Ginseng Research Institute, Korea Ginseng Corporation) ;
  • Park, Joonwoo (Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University) ;
  • Lee, YoungJoo (Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University)
  • Received : 2019.09.16
  • Accepted : 2020.01.07
  • Published : 2021.01.15

Abstract

Background: Korean Red Ginseng (KRG) is a natural product with antiinflammatory and anticarcinogenic effects. We have previously reported that the endocrine-disrupting compound bisphenol A (BPA)-induced cyclooxygenase-2 (COX-2) via nuclear translocation of nuclear factor-kappa B (NF-κB) and activation of mitogen-activated protein kinase and promoted the migration of A549. Here, in this study, we assessed the protective effect of KRG on the BPA-induced reactive oxygen species (ROS) and expression of COX-2 and matrix metalloproteinase-9 (MMP-9) in A549 cells. Methods: The effects of KRG on the upregulation of ROS production and COX-2 and MMP-9 expression by BPA were evaluated by fluorescence-activated cell sorting (FACs) analysis, quantitative reverse transcription polymerase chain reaction, and western blotting. Antimigration ability by KRG was evaluated by migration assay in A549 cells. Results: KRG significantly suppressed the BPA-induced COX-2, the activity of NF-κB, the production of ROS, and the migration of A549 cells. These effects led to the downregulation of the expression of MMP-9. Conclusions: Overall, our results suggest that KRG exerts an antiinflammatory effect on BPA-treated A549 cells via the suppression of ROS and downregulation of NF-κB activation and COX-2 expression which leads to a decrease in cellular migration and MMP-9 expression. These results provide a new possible therapeutic application of KRG to protect BPA-induced possible inflammatory disorders.

Keywords

References

  1. Kang JH, Kondo F, Katayama Y. Human exposure to bisphenol A. Toxicology 2006;226(2-3):79-89. https://doi.org/10.1016/j.tox.2006.06.009
  2. Staples CA, Dorn PB, Klecka GM, O'Block ST, Harris LR. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 1998;36(10):2149-73. https://doi.org/10.1016/S0045-6535(97)10133-3
  3. Gurmeet K, Rosnah I, Normadiah MK, Das S, Mustafa AM. Detrimental effects of bisphenol A on development and functions of the male reproductive system in experimental rats. EXCLI J 2014;13:151-60.
  4. Hass U, Christiansen S, Boberg J, Rasmussen MG, Mandrup K, Axelstad M. Low-dose effect of developmental bisphenol A exposure on sperm count and behaviour in rats. Andrology 2016;4(4):594-607. https://doi.org/10.1111/andr.12176
  5. Washington W, Hubert L, Jones D, Gray WG. Bisphenol a binds to the low-affinity estrogen binding site. Vitr Mol Toxicol 2001;14(1):43-51. https://doi.org/10.1089/109793301316882531
  6. Sweeney MF, Hasan N, Soto AM, Sonnenschein C. Environmental endocrine disruptors: effects on the human male reproductive system. Rev Endocr Metab Disord 2015;16(4):341-57. https://doi.org/10.1007/s11154-016-9337-4
  7. Fischer C, Mamillapalli R, Goetz LG, Jorgenson E, Ilagan Y, Taylor HS. Bisphenol A (BPA) exposure in utero leads to immunoregulatory cytokine dysregulation in the mouse mammary gland: a potential mechanism programming breast cancer risk. Horm Cancer 2016;7(4):241-51. https://doi.org/10.1007/s12672-016-0254-5
  8. Trukhacheva E, Lin Z, Reierstad S, Cheng YH, Milad M, Bulun SE. Estrogen receptor (ER) beta regulates ERalpha expression in stromal cells derived from ovarian endometriosis. J Clin Endocrinol Metab 2009;94(2):615-22. https://doi.org/10.1210/jc.2008-1466
  9. Bulun SE. Endometriosis. N Engl J Med. 2009;360(3):268-79. https://doi.org/10.1056/NEJMra0804690
  10. Arnal JF, Laurell H, Fontaine C, Billon A, Calippe B, Lenfant F, Gourdy P. Estrogen receptor actions on vascular biology and inflammation: implications in vascular pathophysiology. Climacteric 2009;12(Suppl 1):12-7. https://doi.org/10.1080/13697130902820006
  11. Kovats S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol 2015;294(2):63-9. https://doi.org/10.1016/j.cellimm.2015.01.018
  12. Monteiro R, Teixeira D, Calhau C. Estrogen signaling in metabolic inflammation. Mediators Inflamm 2014;2014:615917. https://doi.org/10.1155/2014/615917
  13. Panchanathan R, Liu H, Leung YK, Ho SM, Choubey D. Bisphenol A (BPA) stimulates the interferon signaling and activates the inflammasome activity in myeloid cells. Mol Cell Endocrinol 2015;415:45-55. https://doi.org/10.1016/j.mce.2015.08.003
  14. Gao H, Yang BJ, Li N, Feng LM, Shi XY, Zhao WH, Liu SJ. Bisphenol A and hormone-associated cancers: current progress and perspectives. Medicine (Baltimore) 2015;94(1):e211. https://doi.org/10.1097/md.0000000000000211
  15. Song H, Park J, Bui PTC, Choi K, Gye MC, Hong YC, Kim JH, Lee YJ. Bisphenol A induces COX-2 through the mitogen-activated protein kinase pathway and is associated with levels of inflammation-related markers in elderly populations. Environ Res 2017;158:490-8. https://doi.org/10.1016/j.envres.2017.07.005
  16. Abedelhaffez AS, El-Aziz EAA, Aziz MAA, Ahmed AM. Lung injury induced by Bisphenol A: a food contaminant, is ameliorated by selenium supplementation. Pathophysiology 2017;24(2):81-9. https://doi.org/10.1016/j.pathophys.2017.02.003
  17. So SH, Lee JW, Kim YS, Hyun SH, Han CK. Red ginseng monograph. J Ginseng Res 2018;42(4):549-61. https://doi.org/10.1016/j.jgr.2018.05.002
  18. Kim JH. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. J Ginseng Res 2018;42(3):264-9. https://doi.org/10.1016/j.jgr.2017.10.004
  19. Christensen LP. Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res 2009;55:1-99. https://doi.org/10.1016/S1043-4526(08)00401-4
  20. Wang Y, Choi HK, Brinckmann JA, Jiang X, Huang L. Chemical analysis of Panax quinquefolius (North American ginseng): a review. J Chromatogr A 2015;1426:1-15. https://doi.org/10.1016/j.chroma.2015.11.012
  21. Lee SM, Bae BS, Park HW, Ahn NG, Cho BG, Cho YL, Kwak YS. Characterization of Korean red ginseng (Panax ginseng meyer): history, preparation method, and chemical composition. J Ginseng Res 2015;39(4):384-91. https://doi.org/10.1016/j.jgr.2015.04.009
  22. Nakhjavani M, Hardingham JE, Palethorpe HM, Tomita Y, Smith E, Price TJ. Townsend A.R. Ginsenoside Rg3: potential molecular targets and therapeutic indication in metastatic breast cancer. Medicines (Basel) 2019;6(1).
  23. Lee YM, Yoon H, Park HM, Song BC, Yeum KJ. Implications of red Panax ginseng in oxidative stress associated chronic diseases. J Ginseng Res 2017;41(2):113-9. https://doi.org/10.1016/j.jgr.2016.03.003
  24. Kim KH, Lee D, Lee HL, Kim CE, Jung K, Kang KS. Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions. J Ginseng Res 2018;42(3):239-47. https://doi.org/10.1016/j.jgr.2017.03.011
  25. Ahuja A, Kim JH, Kim JH, Yi YS, Cho JY. Functional role of ginseng-derived compounds in cancer. J Ginseng Res 2018;42(3):248-54. https://doi.org/10.1016/j.jgr.2017.04.009
  26. Saba E, Lee YY, Kim M, Kim SH, Hong SB, Rhee MH. A comparative study on immune-stimulatory and antioxidant activities of various types of ginseng extracts in murine and rodent models. J Ginseng Res 2018;42(4):577-84. https://doi.org/10.1016/j.jgr.2018.07.004
  27. Song H, Lee YJ. Inhibition of hypoxia-induced cyclooxygenase-2 by Korean Red Ginseng is dependent on peroxisome proliferator-activated receptor gamma. J Ginseng Res 2017;41(3):240-6. https://doi.org/10.1016/j.jgr.2016.04.001
  28. In G, Ahn NG, Bae BS, Lee MW, Park HW, Jang KH, Cho BG, Han CK, Park CK, Kwak YS. In situ analysis of chemical components induced by steaming between fresh ginseng, steamed ginseng, and red ginseng. J Ginseng Res 2017;41(3):361-9. https://doi.org/10.1016/j.jgr.2016.07.004
  29. Kim E, Kim D, Yoo S, Hong YH, Han SY, Jeong S, Jeong D, Kim JH, Cho JY, Park J. The skin protective effects of compound K, a metabolite of ginsenoside Rb1 from Panax ginseng. J Ginseng Res 2018;42(2):218-24. https://doi.org/10.1016/j.jgr.2017.03.007
  30. Park C, Lee J, Kong B, Park J, Song H, Choi K, Guon T, Lee Y. The effects of bisphenol A, benzyl butyl phthalate, and di(2-ethylhexyl) phthalate on estrogen receptor alpha in estrogen receptor-positive cells under hypoxia. Environ Pollut 2019;248:774-81. https://doi.org/10.1016/j.envpol.2019.02.069
  31. Kim HJ, Choi JH, Hwang JH, Kim KS, Noh JR, Choi DH, Moon SJ, Kim HY, Kim SW, Choi S, et al. 3,5-Di-C-beta-D-glucopyranosyl phloroacetophenone, a major component of Melicope ptelefolia, suppresses fibroblast activation and alleviates arthritis in a mouse model: potential therapeutics for rheumatoid arthritis. Int J Mol Med 2018;42(5):2763-75. https://doi.org/10.3892/ijmm.2018.3849
  32. Wang X, Su GY, Zhao C, Qu FZ, Wang P, Zhao YQ. Anticancer activity and potential mechanisms of 1C, a ginseng saponin derivative, on prostate cancer cells. J Ginseng Res 2018;42(2):133-43. https://doi.org/10.1016/j.jgr.2016.12.014
  33. Kim EJ, Kwon KA, Lee YE, Kim JH, Kim SH, Kim JH. Korean Red Ginseng extract reduces hypoxia-induced epithelial-mesenchymal transition by repressing NF-kappaB and ERK1/2 pathways in colon cancer. J Ginseng Res 2018;42(3):288-97. https://doi.org/10.1016/j.jgr.2017.03.008
  34. Sgambato A, Cittadini A. Inflammation and cancer: a multifaceted link. Eur Rev Med Pharmacol Sci 2010;14(4):263-8.
  35. Gandhi J, Khera L, Gaur N, Paul C, Kaul R. Role of modulator of inflammation cyclooxygenase-2 in gammaherpesvirus mediated tumorigenesis. Front Microbiol 2017;8:538. https://doi.org/10.3389/fmicb.2017.00538
  36. Lim JW, Kim H, Kim KH. Nuclear factor-kappaB regulates cyclooxygenase-2 expression and cell proliferation in human gastric cancer cells. Lab Invest 2001;81(3):349-60. https://doi.org/10.1038/labinvest.3780243
  37. Wan F, Lenardo MJ. The nuclear signaling of NF-kappaB: current knowledge, new insights, and future perspectives. Cell Res 2010;20(1):24-33. https://doi.org/10.1038/cr.2009.137
  38. Liu T, Zhang L, Joo D, Sun SC. NF-kappaB signaling in inflammation. Signal Transduct Target Ther 2017;2.
  39. Cheng HH, Kuo CC, Yan JL, Chen HL, Lin WC, Wang KH, Tsai KK, Guven H, Flaberg E, Szekely L, et al. Control of cyclooxygenase-2 expression and tumorigenesis by endogenous 5-methoxytryptophan. Proc Natl Acad Sci U S A 2012;109(33):13231-6. https://doi.org/10.1073/pnas.1209919109
  40. Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 2011;21(1):103-15. https://doi.org/10.1038/cr.2010.178
  41. Kumari S, Badana AK, MM G, S G, Malla R. Reactive oxygen species: a key constituent in cancer survival. Biomark Insights 2018;13. 1177271918755391.
  42. Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 2011;278(1):16-27. https://doi.org/10.1111/j.1742-4658.2010.07919.x
  43. Zhang KS, Chen HQ, Chen YS, Qiu KF, Zheng XB, Li GC, Yang HD, Wen CJ. Bisphenol A stimulates human lung cancer cell migration via upregulation of matrix metalloproteinases by GPER/EGFR/ERK1/2 signal pathway. Biomed Pharmacother 2014;68(8):1037-43. https://doi.org/10.1016/j.biopha.2014.09.003
  44. Wang ZY, Lu J, Zhang YZ, Zhang M, Liu T, Qu XL. Effect of Bisphenol A on invasion ability of human trophoblastic cell line BeWo. Int J Clin Exp Pathol 2015;8(11):14355-64.
  45. Lan X, Fu LJ, Zhang J, Liu XQ, Zhang HJ, Zhang X, Ma MF, Chen XM, He JL, Li LB, et al. Bisphenol A exposure promotes HTR-8/SVneo cell migration and impairs mouse placentation involving upregulation of integrin-beta1 and MMP-9 and stimulation of MAPK and PI3K signaling pathways. Oncotarget 2017;8(31):51507-21. https://doi.org/10.18632/oncotarget.17882
  46. Wang KH, Kao AP, Chang CC, Lin TC, Kuo TC. Bisphenol A-induced epithelial to mesenchymal transition is mediated by cyclooxygenase-2 up-regulation in human endometrial carcinoma cells. Reprod Toxicol 2015;58:229-33. https://doi.org/10.1016/j.reprotox.2015.10.011
  47. Wang L, Hao J, Hu J, Pu J, Lu Z, Zhao L, Wang Q, Yu Q, Wang Y, Li G. Protective effects of ginsenosides against Bisphenol A-induced cytotoxicity in 15P-1 Sertoli cells via extracellular signal-regulated kinase 1/2 signalling and antioxidant mechanisms. Basic Clin Pharmacol Toxicol 2012;111(1):42-9. https://doi.org/10.1111/j.1742-7843.2012.00857.x
  48. Wang KH, Kao AP, Chang CC, Lin TC, Kuo TC. Bisphenol A at environmentally relevant doses induces cyclooxygenase-2 expression and promotes invasion of human mesenchymal stem cells derived from uterine myoma tissue. Taiwan J Obstet Gynecol 2013;52(2):246-52. https://doi.org/10.1016/j.tjog.2013.04.016
  49. Huang YF, Wang PW, Huang LW, Lai CH, Yang W, Wu KY, Lu CA, Chen HC, Chen ML. Prenatal nonylphenol and bisphenol A exposures and inflammation are determinants of oxidative/nitrative stress: a Taiwanese cohort study. Environ Sci Technol 2017;51(11):6422-9. https://doi.org/10.1021/acs.est.7b00801
  50. Kaur K, Chauhan V, Gu F, Chauhan A. Bisphenol A induces oxidative stress and mitochondrial dysfunction in lymphoblasts from children with autism and unaffected siblings. Free Radic Biol Med 2014;76:25-33. https://doi.org/10.1016/j.freeradbiomed.2014.07.030
  51. Gassman NR. Induction of oxidative stress by bisphenol A and its pleiotropic effects. Environ Mol Mutagen 2017;58(2):60-71. https://doi.org/10.1002/em.22072
  52. Vinas R, Watson CS. Mixtures of xenoestrogens disrupt estradiol-induced non-genomic signaling and downstream functions in pituitary cells. Environ Health 2013;12:26. https://doi.org/10.1186/1476-069X-12-26
  53. Zhu J, Jiang L, Liu Y, Qian W, Liu J, Zhou J, Gao R, Xiao H, Wang J. MAPK and NF-kappaB pathways are involved in bisphenol A-induced TNF-alpha and IL-6 production in BV2 microglial cells. Inflammation 2015;38(2):637-48. https://doi.org/10.1007/s10753-014-9971-5
  54. Ge LC, Wang HS. A commentary on "Involvement of activating ERK1/2 trough G protein coupled receptor 30 and estrogen receptor alpha/beta in low doses of bisphenol A promoting growth of Sertoli TM4 cells". Toxicol Lett 2016;240(1):236-7. https://doi.org/10.1016/j.toxlet.2015.09.021
  55. Yang M, Lee HS, Hwang MW, Jin M. Effects of Korean red ginseng (Panax Ginseng Meyer) on bisphenol A exposure and gynecologic complaints: single blind, randomized clinical trial of efficacy and safety. BMC Complement Altern Med 2014;14:265. https://doi.org/10.1186/1472-6882-14-265
  56. Saadeldin IM, Hussein MA, Suleiman AH, Abohassan MG, Ahmed MM, Moustafa AA, Moumen AF, Abdel-Aziz Swelum A. Ameliorative effect of ginseng extract on phthalate and bisphenol A reprotoxicity during pregnancy in rats. Environ Sci Pollut Res Int 2018;25(21):21205-15. https://doi.org/10.1007/s11356-018-2299-1
  57. Mahmoudi A, Hadrich F, Feki I, Ghorbel H, Bouallagui Z, Marrekchi R, Fourati H, Sayadi S. Oleuropein and hydroxytyrosol rich extracts from olive leaves attenuate liver injury and lipid metabolism disturbance in bisphenol Atreated rats. Food Funct 2018;9(6):3220-34. https://doi.org/10.1039/c8fo00248g
  58. Khalaf AA, Ahmed W, Moselhy WA, Abdel-Halim BR, Ibrahim MA. Protective effects of selenium and nano-selenium on bisphenol-induced reproductive toxicity in male rats. Hum Exp Toxicol 2019;38(4):398-408. https://doi.org/10.1177/0960327118816134
  59. Clarke TC, Black LI, Stussman BJ, Barnes PM, Nahin RL. Trends in the use of complementary health approaches among adults: United States, 2002-2012. Natl Health Stat Report 2015;(79):1-16.
  60. Huang H. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: recent advances. Sensors (Basel) 2018;18(10). https://doi.org/10.3390/s18103415
  61. Kim JH, Lee KW, Lee MW, Lee HJ, Kim SH, Surh YJ. Hirsutenone inhibits phorbol ester-induced upregulation of COX-2 and MMP-9 in cultured human mammary epithelial cells: NF-kappaB as a potential molecular target. FEBS Lett 2006;580(2):385-92. https://doi.org/10.1016/j.febslet.2005.12.015
  62. Kim S, Kim SH, Hur SM, Lee SK, Kim WW, Kim JS, Kim JH, Choe JH, Nam SJ, Lee JE, et al. Silibinin prevents TPA-induced MMP-9 expression by downregulation of COX-2 in human breast cancer cells. J Ethnopharmacol 2009;126(2):252-7. https://doi.org/10.1016/j.jep.2009.08.032
  63. Winer A, Adams S, Mignatti P. Matrix metalloproteinase inhibitors in cancer therapy: turning past failures into future successes. Mol Cancer Ther 2018;17(6):1147-55. https://doi.org/10.1158/1535-7163.MCT-17-0646
  64. Zhang XL, Liu N, Weng SF, Wang HS. Bisphenol A increases the migration and invasion of triple-negative breast cancer cells via oestrogen-related receptor gamma. Basic Clin Pharmacol Toxicol 2016;119(4):389-95. https://doi.org/10.1111/bcpt.12591
  65. Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2002;295(5564):2387-92. https://doi.org/10.1126/science.1067100