DOI QR코드

DOI QR Code

Ginsenosides Rk1 and Rg5 inhibit transforming growth factor-β1-induced epithelial-mesenchymal transition and suppress migration, invasion, anoikis resistance, and development of stem-like features in lung cancer

  • Kim, Hyunhee (Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine) ;
  • Choi, Pilju (Natural Products Research Institute, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Taejung (Natural Products Research Institute, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Youngseok (Natural Products Research Institute, Korea Institute of Science and Technology (KIST)) ;
  • Song, Bong Geun (Natural Products Research Institute, Korea Institute of Science and Technology (KIST)) ;
  • Park, Young-Tae (Natural Products Research Institute, Korea Institute of Science and Technology (KIST)) ;
  • Choi, Seon-Jun (Natural Products Research Institute, Korea Institute of Science and Technology (KIST)) ;
  • Yoon, Cheol Hee (Natural Products Research Institute, Korea Institute of Science and Technology (KIST)) ;
  • Lim, Won-Chul (Traditional Food Research Group, Korea Food Research Institute) ;
  • Ko, Hyeonseok (Biomedical Research Center, Asan Institute for Life Sciences) ;
  • Ham, Jungyeob (Natural Products Research Institute, Korea Institute of Science and Technology (KIST))
  • Received : 2019.07.03
  • Accepted : 2020.02.28
  • Published : 2021.01.15

Abstract

Background: Lung cancer has a high incidence worldwide, and most lung cancer-associated deaths are attributable to cancer metastasis. Although several medicinal properties of Panax ginseng Meyer have been reported, the effect of ginsenosides Rk1 and Rg5 on epithelial-mesenchymal transition (EMT) stimulated by transforming growth factor beta 1 (TGF-β1) and self-renewal in A549 cells is relatively unknown. Methods: We treated TGF-β1 or alternatively Rk1 and Rg5 in A549 cells. We used western blot analysis, real-time polymerase chain reaction (qPCR), wound healing assay, Matrigel invasion assay, and anoikis assays to determine the effect of Rk1 and Rg5 on TGF-mediated EMT in lung cancer cell. In addition, we performed tumorsphere formation assays and real-time PCR to evaluate the stem-like properties. Results: EMT is induced by TGF-β1 in A549 cells causing the development of cancer stem-like features. Expression of E-cadherin, an epithelial marker, decreased and an increase in vimentin expression was noted. Cell mobility, invasiveness, and anoikis resistance were enhanced with TGF-β1 treatment. In addition, the expression of stem cell markers, CD44, and CD133, was also increased. Treatment with Rk1 and Rg5 suppressed EMT by TGF-β1 and the development of stemness in a dose-dependent manner. Additionally, Rk1 and Rg5 markedly suppressed TGF-β1-induced metalloproteinase-2/9 (MMP2/9) activity, and activation of Smad2/3 and nuclear factor kappa B/extra-cellular signal regulated kinases (NF-kB/ERK) pathways in lung cancer cells. Conclusions: Rk1 and Rg5 regulate the EMT inducing TGF-β1 by suppressing the Smad and NF-κB/ERK pathways (non-Smad pathway).

Keywords

References

  1. Torre LA, Siegel RL, Jemal A. Lung cancer statistics. Adv Exp Med Biol 2016;893:1-19. https://doi.org/10.1007/978-3-319-24223-1_1
  2. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin 2014;64(1):9-29. https://doi.org/10.3322/caac.21208
  3. Reck M, Heigener DF, Mok T, Soria J-C, Rabe KF. Management of non-small-cell lung cancer: recent developments. The Lancet 2013;382(9893):709-19. https://doi.org/10.1016/S0140-6736(13)61502-0
  4. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell 2011;147(2):275-92. https://doi.org/10.1016/j.cell.2011.09.024
  5. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002;2(6):442-54. https://doi.org/10.1038/nrc822
  6. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009;139(5):871-90. https://doi.org/10.1016/j.cell.2009.11.007
  7. Batlle E, Sancho E, Franci C, DomingueZ D, Monfar M, Baulida J, Herreros AG. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000;2(2):84-9. https://doi.org/10.1038/35000034
  8. Humbert PO, Grzeschik NA, Brumby AM, Galea R, Elsum I, Richardson HE. Control of tumourigenesis by the Scribble/Dlg/Lgl polarity module. Oncogene 2008;27(55):6888-907. https://doi.org/10.1038/onc.2008.341
  9. Birchmeier W, Behrens J. Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1994;1198(1):11-26. https://doi.org/10.1016/0304-419X(94)90003-5
  10. Fong YC, Hsu SF, Wu CL, Li TM, Kao ST, Tsai FJ, Chen WC, Liu SC, Wu CM, Tang CH. Transforming growth factor-beta1 increases cell migration and beta1 integrin up-regulation in human lung cancer cells. Lung Cancer 2009;64(1):13-21. https://doi.org/10.1016/j.lungcan.2008.07.010
  11. Massague J. TGF-beta signalling in context. Nat Rev Mol Cell Biol 2012;13(10): 616-30. https://doi.org/10.1038/nrm3434
  12. Liu X, Yun F, Shi L, Li Z-H, Luo N-R, Jia Y-F. Roles of signaling pathways in the epithelial-mesenchymal transition in cancer. Asian Pac J Cancer Prev 2015;16(15):6201-6. https://doi.org/10.7314/APJCP.2015.16.15.6201
  13. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008;133(4):704-15. https://doi.org/10.1016/j.cell.2008.03.027
  14. Monteiro J, Fodde R. Cancer stemness and metastasis: therapeutic consequences and perspectives. Eur J Cancer 2010;46(7):1198-203. https://doi.org/10.1016/j.ejca.2010.02.030
  15. Bent S, Ko R. Commonly used herbal medicines in the United States: a review. Am J Med 2004;116(7):478-85. https://doi.org/10.1016/j.amjmed.2003.10.036
  16. Nocerino E, Amato M, Izzo AA. The aphrodisiac and adaptogenic properties of ginseng. Fitoterapia 2000;71(Suppl 1):S1-5. https://doi.org/10.1016/S0367-326X(00)00170-2
  17. Huang YC, Chen CT, Chen SC, Lai PH, Liang HC, Chang Y, Yu LC, Sung HW. A natural compound (ginsenoside Re) isolated from Panax ginseng as a novel angiogenic agent for tissue regeneration. Pharm Res 2005;22(4):636-46. https://doi.org/10.1007/s11095-005-2500-3
  18. Kim KR, Chung TY, Shin H, Son SH, Park KK, Choi JH, Chung WY. Red ginseng saponin extract attenuates murine collagen-induced arthritis by reducing pro-inflammatory responses and matrix metalloproteinase-3 expression. Biol. Pharm. Bull. 2010;33(4):604-10. https://doi.org/10.1248/bpb.33.604
  19. Choi P, Park JY, Kim T, Park S-H, Kim H-k, Kang KS, Ham J. Improved anticancer effect of ginseng extract by microwave-assisted processing through the generation of ginsenosides Rg3, Rg5 and Rk1. J Funct Foods 2015;14:613-22. https://doi.org/10.1016/j.jff.2015.02.038
  20. Kim YJ, Yamabe N, Choi P, Lee JW, Ham J, Kang KS. Efficient thermal deglycosylation of ginsenoside Rd and its contribution to the improved anticancer activity of ginseng. J Agric Food Chem 2013;61(38):9185-91. https://doi.org/10.1021/jf402774d
  21. Ko H, Kim S, Yang K, Kim K. Phosphorylation-dependent stabilization of MZF1 upregulates N-cadherin expression during protein kinase CK2-mediated epithelial-mesenchymal transition. Oncogenesis 2018;7(3):27. https://doi.org/10.1038/s41389-018-0035-9
  22. Kim YJ, Choi WI, Jeon BN, Choi KC, Kim K, Kim TJ, Ham J, Jang HJ, Kang KS, Ko H. Stereospecific effects of ginsenoside 20-Rg3 inhibits TGF-beta1-induced epithelial-mesenchymal transition and suppresses lung cancer migration, invasion and anoikis resistance. Toxicology 2014;322:23-33. https://doi.org/10.1016/j.tox.2014.04.002
  23. Lim WC, Kim H, Kim YJ, Choi KC, Lee IH, Lee KH, Kim MK, Ko H. Dioscin suppresses TGF-beta1-induced epithelial-mesenchymal transition and suppresses A549 lung cancer migration and invasion. Bioorg Med Chem Lett 2017;27(15):3342-8. https://doi.org/10.1016/j.bmcl.2017.06.014
  24. Frisch SM, Schaller M, Cieply B. Mechanisms that link the oncogenic epithelial-mesenchymal transition to suppression of anoikis. J Cell Sci 2013;126(Pt 1):21-9. https://doi.org/10.1242/jcs.120907
  25. Kim YJ, Jeon Y, Kim T, Lim WC, Ham J, Park YN, Kim TJ, Ko H. Combined treatment with zingerone and its novel derivative synergistically inhibits TGF-beta1 induced epithelial-mesenchymal transition, migration and invasion of human hepatocellular carcinoma cells. Bioorg Med Chem Lett 2017;27(4): 1081-8. https://doi.org/10.1016/j.bmc1.2016.12.042
  26. Hayden MS, Ghosh S. Regulation of NF-kappaB by TNF family cytokines. Semin Immunol 2014;26(3):253-66. https://doi.org/10.1016/j.smim.2014.05.004
  27. Hadler-Olsen E, Winberg J-O, Uhlin-Hansen LJTB. Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets 2013;34(4):2041-51. https://doi.org/10.1007/s13277-013-0842-8
  28. Smith AL, Robin TP, Ford HL. Molecular pathways: targeting the TGF-beta pathway for cancer therapy. Clin Cancer Res 2012;18(17):4514-21. https://doi.org/10.1158/1078-0432.ccr-11-3224
  29. Hsieh HL, Wang HH, Wu WB, Chu PJ, Yang CM. Transforming growth factorbeta1 induces matrix metalloproteinase-9 and cell migration in astrocytes: roles of ROS-dependent ERK- and JNK-NF-kappaB pathways. J Neuroinflammation 2010;7:88. https://doi.org/10.1186/1742-2094-7-88
  30. Chen HH, Zhou XL, Shi YL, Yang J. Roles of p38 MAPK and JNK in TGF-beta1-induced human alveolar epithelial to mesenchymal transition. Arch Med Res 2013;44(2):93-8. https://doi.org/10.1016/j.arcmed.2013.01.004
  31. Huang X, Chen S, Xu L, Liu Y, Deb DK, Platanias LC, Bergan RC. Genistein inhibits p38 map kinase activation, matrix metalloproteinase type 2, and cell invasion in human prostate epithelial cells. Cancer Res 2005;65(8):3470-8. https://doi.org/10.1158/0008-5472.CAN-04-2807
  32. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007;449(7163):682-8. https://doi.org/10.1038/nature06174
  33. Stetler-Stevenson WG, Aznavoorian S, Liotta LA. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 1993;9:541-73. https://doi.org/10.1146/annurev.cb.09.110193.002545
  34. Weiss L. Metastatic inefficiency. Adv Cancer Res 1990;54:159-211. https://doi.org/10.1016/S0065-230X(08)60811-8
  35. Asiedu MK, Ingle JN, Behrens MD, Radisky DC, Knutson KL. TGF-beta/TNF(alpha)-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res 2011;71(13):4707-19. https://doi.org/10.1158/0008-5472.CAN-10-4554
  36. Fernando RI, Castillo MD, Litzinger M, Hamilton DH, Palena C. IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells. Cancer Res 2011;71(15):5296-306. https://doi.org/10.1158/0008-5472.CAN-11-0156
  37. Yadav A, Kumar B, Datta J, Teknos TN, Kumar P. IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAKSTAT3-SNAIL signaling pathway. Mol Cancer Res 2011;9(12):1658-67. https://doi.org/10.1158/1541-7786.MCR-11-0271
  38. Massague J, Blain SW, Lo RS. TGF-beta signaling in growth control, cancer, and heritable disorders. Cell 2000;103(2):295-309. https://doi.org/10.1016/S0092-8674(00)00121-5
  39. FOXM1 confers to epithelial-mesenchymal transition, stemness and chemoresistance in epithelial ovarian carcinoma cells. Oncotarget 2014;6.
  40. Sehgal I, Thompson TC. Novel regulation of type IV collagenase (matrix metalloproteinase-9 and -2) activities by transforming growth factor-beta1 in human prostate cancer cell lines. Mol Biol Cell 1999;10(2):407-16. https://doi.org/10.1091/mbc.10.2.407
  41. Hedges JC, Dechert MA, Yamboliev IA, Martin JL, Hickey E, Weber LA, Gerthoffer WT. A role for p38(MAPK)/HSP27 pathway in smooth muscle cell migration. J Biol Chem 1999;274(34):24211-9. https://doi.org/10.1074/jbc.274.34.24211
  42. Liang LD, He T, Du TW, Fan YG, Chen DS, Wang Y. GinsenosideRg5 induces apoptosis and DNA damage in human cervical cancer cells. Mol Med Rep 2015;11(2):940-6. https://doi.org/10.3892/mmr.2014.2821
  43. Yu Q, Zeng KW, Ma XL, Jiang Y, Tu PF, Wang XM. Ginsenoside Rk1 suppresses pro-inflammatory responses in lipopolysaccharide-stimulated RAW264.7 cells by inhibiting the Jak2/Stat3 pathway. Chin J Nat Med 2017;15(10):751-7.
  44. He X, Ota T, Liu P, Su C, Chien J, Shridhar V. Downregulation of HtrA1 promotes resistance to anoikis and peritoneal dissemination of ovarian cancer cells. Cancer Res 2010;70(8):3109-18. https://doi.org/10.1158/0008-5472.CAN-09-3557
  45. Zhu J, Wang S, Chen Y, Li X, Jiang Y, Yang X, Li Y, Wang X, Meng Y, Zhu M, et al. miR-19 targeting of GSK3beta mediates sulforaphane suppression of lung cancer stem cells. J Nutr Biochem 2017;44:80-91. https://doi.org/10.1016/j.jnutbio.2017.02.020
  46. Wu YC, Tang SJ, Sun GH, Sun KH. CXCR7 mediates TGF-beta1-promoted EMT and tumor-initiating features in lung cancer. Oncogene 2016;35(16):2123-32. https://doi.org/10.1038/onc.2015.274
  47. Ko H, So Y, Jeon H, Jeong MH, Choi HK, Ryu SH, Lee SW, Yoon HG, Choi KC. TGF-beta1-induced epithelial-mesenchymal transition and acetylation of Smad2 and Smad3 are negatively regulated by EGCG in human A549 lung cancer cells. Cancer Lett 2013;335(1):205-13. https://doi.org/10.1016/j.canlet.2013.02.018
  48. Ko H, Jeon H, Lee D, Choi HK, Kang KS, Choi KC. Sanguiin H6 suppresses TGF-beta induction of the epithelial-mesenchymal transition and inhibits migration and invasion in A549 lung cancer. Bioorg Med Chem Lett 2015;25(23):5508-13. https://doi.org/10.1016/j.bmcl.2015.10.067
  49. Ko H. Geraniin inhibits TGF-beta1-induced epithelial-mesenchymal transition and suppresses A549 lung cancer migration, invasion and anoikis resistance. Bioorg Med Chem Lett 2015;25(17):3529-34. https://doi.org/10.1016/j.bmcl.2015.06.093
  50. Pang L, Li Q, Wei C, Zou H, Li S, Cao W, He J, Zhou Y, Ju X, Lan J, et al. TGF-beta1/Smad signaling pathway regulates epithelial-to-mesenchymal transition in esophageal squamous cell carcinoma: in vitro and clinical analyses of cell lines and nomadic Kazakh patients from northwest Xinjiang, China. PLoS One 2014;9(12):e112300. https://doi.org/10.1371/journal.pone.0112300
  51. Feng H, Lu JJ, Wang Y, Pei L, Chen X. Osthole inhibited TGF beta-induced epithelial-mesenchymal transition (EMT) by suppressing NF-kappaB mediated Snail activation in lung cancer A549 cells. Cell Adh Migr 2017;11(5-6):464-75. https://doi.org/10.1080/19336918.2016.1259058
  52. Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL. Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia 2004;6(5):603-10. https://doi.org/10.1593/neo.04241
  53. Liang Y, Ye J, Jiao J, Zhang J, Lu Y, Zhang L, Wan D, Duan L, Wu Y, Zhang B. Down-regulation of miR-125a-5p is associated with salivary adenoid cystic carcinoma progression via targeting p38/JNK/ERK signal pathway. Am J Transl Res 2017;9(3):1101-13.
  54. Mochizuki M, Yoo YC, Matsuzawa K, Sato K, Saiki I, Tono-oka S, Samukawa K, Azuma I. Inhibitory effect of tumor metastasis in mice by saponins, ginsenoside-Rb2, 20(R)- and 20(S)-ginsenoside-Rg3, of red ginseng. Biol Pharm Bull 1995;18:1197-202. https://doi.org/10.1248/bpb.18.1197

Cited by

  1. Strategies for Remodeling the Tumor Microenvironment Using Active Ingredients of Ginseng-A Promising Approach for Cancer Therapy vol.12, 2021, https://doi.org/10.3389/fphar.2021.797634
  2. The Epithelial-to-Mesenchymal Transition-Like Process Induced by TGF-β1 Enhances Rubella Virus Binding and Infection in A549 Cells via the Smad Pathway vol.9, pp.3, 2021, https://doi.org/10.3390/microorganisms9030662
  3. (-)-Leucophyllone, a Tirucallane Triterpenoid from Cornus walteri, Enhances Insulin Secretion in INS-1 Cells vol.10, pp.3, 2021, https://doi.org/10.3390/plants10030431
  4. 4,6′-Anhydrooxysporidinone from Fusarium lateritium SSF2 Induces Autophagic and Apoptosis Cell Death in MCF-7 Breast Cancer Cells vol.11, pp.6, 2021, https://doi.org/10.3390/biom11060869
  5. Combined Beneficial Effect of Genistein and Atorvastatin on Adipogenesis in 3T3-L1 Adipocytes vol.11, pp.7, 2021, https://doi.org/10.3390/biom11071052
  6. Identification of Renoprotective Phytosterols from Mulberry (Morus alba) Fruit against Cisplatin-Induced Cytotoxicity in LLC-PK1 Kidney Cells vol.10, pp.11, 2021, https://doi.org/10.3390/plants10112481
  7. Combined Anti-Adipogenic Effects of Hispidulin and p-Synephrine on 3T3-L1 Adipocytes vol.11, pp.12, 2021, https://doi.org/10.3390/biom11121764
  8. Preventive Effect of Anemarrhenae rhizome and Phellodendri cortex on Danazol-Induced in Precocious Puberty in Female Rats and Network Pharmacological Analysis of Active Compounds vol.11, pp.1, 2021, https://doi.org/10.3390/plants11010023