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융합 인덱싱 방법에 의한 조인 쿼리 성능 최 화
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요 약

RDF(Resource Description Framework) 데이터 구조는 그래 로 모델링하기 때문에, 계형 데이터베이스

와 XML 기술의 기존 솔루션은 RDF 모델에 바로 용하기 어렵다. 우리는 링크 데이터를 더욱 효과 으로 

장하고, 인덱스하고, 검색하기 해 융합 인덱싱 방법을 제안한다. 이 방법은 HDD(Hard Disk Drive) 와 

SSD(Solid State Drive) 디바이스에 기반한 하이 리드 스토리지 시스템을 사용하고, 불필요한 데이터를 필터

하고 간 결과를 정제하기 해 분리된 필터  정제 인덱스 구조를 사용한다. 우리는 3개의 표  조인 검색 

알고리즘에 한 성능 비교를 수행했는데, 실험 결과 제안된 방법이 Quad와 Darq와 같은 다른 기존 방법들

에 비해 뛰어난 성능을 보인다.

ABSTRACT

Since RDF (Resource Description Framework) triples are modeled as graph, we cannot directly adopt existing 

solutions in relational databases and XML technology. In order to store, index, and query Linked Data more efficiently, 

we propose a convergence indexing method combined R*-tree and K-dimensional trees. This method uses a hybrid 

storage system based on HDD (Hard Disk Drive) and SSD (Solid State Drive) devices, and a separated filter and 

refinement index structure to filter unnecessary data and further refine the immediate result. We perform performance 

comparisons based on three standard join retrieval algorithms. The experimental results demonstrate that our method 

has achieved remarkable performance compared to other existing methods such as Quad and Darq.
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Ⅰ. Introduction

Linked Data is a new form of distributed data 

on the Web which is especially suitable to be 

manipulated by machines and to share 

knowledge[1]. Linked Data uses RDF (Resource 

Description Framework) to create typed statements 

that link to anything in the world[2]. RDF is a 

description method of the graph database and uses 

the triple statement as the basic structure to 

describe the relationship between resources. A triple 

consists of three parts: subject, predicate, and 
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object. Since RDF data structure is modeled as a 

graph, existing solutions such as relational 

databases and XML technologies are not suitable 

for RDF model[3]. Hence, more studies to store, 

index, and query Linked Data efficiently are needed.

The existing methods are mainly divided into 

two types. First, we can use efficient query 

processing convenience to maintain a separate copy 

of data in a centralized registry. We refer to this 

as the “centralized method.” Second, we can use 

link traversal to access distributed data 

dynamically. We refer to the “distributed method.” 

The centralized method collects data from known 

sources, merges the collected information, performs 

further processing, and finally stores the processed 

results in a centralized registry[4]. The advantage 

of this method provides the excellent query 

response time. But there are several disadvantages. 

Storing all data may be expensive. Users can only 

use Web data that has been copied to the registry. 

The distributed method performs queries over the 

multiple SPARQL (Simple Protocol and RDF Query 

Language)[5] endpoints that publishers provide for 

their Linked Datasets[6]. However, this method 

cannot guarantee that all publishers provide reliable 

SPARQL endpoints for their Linked Data. 

We propose a convergence method between the 

centralized method and the distributed method. Our 

method consists of separated filter and refinement 

index structures with the hybrid storage system. 

Especially, our method aims to support efficient join 

query processing by quickly filtering valueless data.

The remainder of this paper is structured as 

follows. Section Ⅱ describes related work. Section 

Ⅲ proposes our convergence indexing method. 

Section Ⅳ describes the performance evaluation. 

Section Ⅴ summarizes and concludes our paper.

Ⅱ. Related Works

A generally recognized method is the “exhaustive 

indexing” strategy to improve the query efficiency 

(e.g., Hexastore[7] and RDF-3x[8]). They all 

enumerate the various forms of triples that can be 

formed under multiple permutations between the 

subject, attribute, and object, and then build indexes 

for them. The index created in this way happens to 

be a six-fold index. That is, a B+-tree is 

established according to each permutation and 

combination. This strategy is derived from the 

Quad index method[9]. Shortcomings of this 

method: (1) Subject, attribute, attribute values of 

different triples may be repeated, and such 

repetitions will waste storage space. (2) Complex 

queries require a large number of table join 

operations. (3) When SPARQL queries are involved, 

the query cost of their join operations cannot be 

ignored.

With the development of Linked Data, more and 

more publishers are willing to express information 

with RDF data format. Many of these publishers 

provide SPARQL query interfaces and expressing 

data in the RDF data format to share data. These 

systems can independently receive SPARQL queries 

and calculate matches by customization interfaces.  

These independent RDF data sources are integrated 

into a system platform to form a distributed RDF 

data management system. Darq[10] is the first to 

discuss how to perform the SPARQL query 

processing on a distributed RDF data management 

system. This kind of design needs to decompose 

SPARQL queries into several sub-queries in advance 

and send them to their corresponding interfaces so 

that these corresponding RDF data sources can 

process the sub-queries and obtain partial results. 

After that, the system collects these partial results 

and obtains the final results by join operations. 

Therefore, this method produces a large number of 

intermediate results and consumes more time.
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Bentley proposed the K-dimensional tree index 

structure. This data structure is widely used in the 

spatial index. The advantage of this tree is that it 

can solve logarithmic insertion, search, and deletion 

problems. It provides many query application 

protocols including scope, partial matching, nearest 

neighbor, intersection query, and so on[11]. 

Beckmann improved R-tree and proposed 

R*-tree[12]. R*-tree and R-tree[13] are identical in 

structure, and they are the same in tree 

construction, insertion, deletion, and retrieval. The 

difference lies in the following three points: the 

choice of insertion path, the split of nodes, and the 

forced re-insertion algorithm.

David analyzed and compared the hash join 

algorithm and the sort-merge join algorithm. The 

results clearly show that the hash join algorithm is 

superior to the sort-merge algorithm[14]. The 

nested-loop join algorithm[15] is one of the most 

commonly used join algorithms in traditional 

relational databases. It is logical simple, and the 

final result set is returned to the client in a 

pipeline way without waiting for results computed.

Due to the explosive growth of data volume, the 

large-capacity storage at low cost is a significant 

requirement for storage systems[16]. The storage 

device fundamentally determines a storage system's 

performance it relies on. HDD (Hard Disk 

Drive)[17] is still the main storage device used in 

the storage system. However, due to the limitation 

of the mechanical movement of the magnetic head, 

the random access performance of the disk is the 

bottleneck for a long time. SSD (Solid State 

Drive)[18] has emerged in recent years with the 

advantages of good random access performance, 

small size, and low energy consumption. Although 

there are still restrictions such as high price, small 

capacity, erase-before-write, and durability, it can 

form an excellent complement to HDD.

Ⅲ. Convergence Indexing Method  

3.1 Hybrid Storage System

The hybrid storage system is to combine SSD 

with HDD. Frequently accessed data (so called hot 

data) can be stored on SSD and searched more 

rapidly than they are stored on HDD. This 

structure can improve the performance ratio, service 

life, reliability, capacity, and other indicators of the 

entire system. Hence, we adapt this hybrid storage 

system.

3.2 Separated Filter and Refinement Index

      Structure

In our convergence method, we first convert 

RDF data into hash values. In our structure, RDF 

tuples consist of points in n-dimensional data space 

represented by compressed hash values. We convert 

long string literals to hash values, which can 

significantly reduce memory stress. Then, we will 

store the data in the separated filter and refinement 

index structure. The purpose of this structure is to 

filter unnecessary data and further refine the 

immediate result to improve the join query 

performance. After filter and refinement processing, 

we will execute the hash join algorithm to obtain 

final results.

(1) Filter Phase

The first phase of our separated filter and 

refinement index structure is the filtering process. 

We use an R
*
-tree[12] in this phase as shown in 

figure 1.

Fig. 1 R*-tree
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R*-tree, the most popular variant of R-tree, is 

well suited for disk use, and it consists of leaf and 

non-leaf nodes. We use R
*
-tree to reduce 

unnecessary spatial search as much as possible. 

With R
*
-tree, we can quickly select the minimum 

bounding boxes (MBBs) that contain all possible 

RDF tuples that match the join triple query pattern.  

All R
*
-tree nodes are stored in HDD. Figure 2 

shows the query performance for different SPARQL 

query types when R
*
-tree is kept in SSD and 

HDD, respectively. We use three different join 

algorithms: hash join algorithm, nested-loop join 

algorithm, and sort-merge algorithm. We record the 

query time of different SPARQL query types when 

we use different join algorithms and calculate the 

average of each SPARQL query type to analyze the 

performance of R
*
-tree on SSD and HDD. 

Experimental result shows that the performance 

difference of R*-tree on SSD and HDD is not 

obvious. Thus, we use HDD for R*-tree since the 

cost of SSD is higher than that of HDD.

Fig. 2 R*-tree performance on SSD and HDD

(2) Refinement Phase

 The second phase is K-dimensional tree [10] 

groups, which play as refinement processing. Figure 

3 shows K-dimensional tree. After identifying all 

candidate MBBs in the first phase, we perform the 

second phase, where further refine the results 

obtained in the previous filtering processing using 

K-dimensional trees. Then, we execute the hash 

join algorithm to calculate the data in 

K-dimensional trees and get the final results. We 

put K-dimensional trees in SSD since 

K-dimensional trees are great for memory because 

of their good storage utilization, fast search, and 

fast update. The random read performance for the 

hash join algorithm is also excellent in SSD.

Fig. 3 K-dimensional tree

(3) Hash Join Algorithm

To determine which of three join algorithms (i.e., 

hash join, nested-loop join, and sort-merge join 

algorithms) has the best performance, we conduct 

experiments on three SPARQL query types: star 

type, chain type, and complex type. We record the 

query time of different SPARQL query types when 

using different  join algorithms to analyze the 

performance of each join algorithm.

Fig. 4 Comparisons of three join algorithms

As shown in figure 4, the hash join algorithm 

has the most excellent performance among the three 

join algorithms through query performance 
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comparisons of the three join algorithms. The hash 

join algorithm is very stable in the overall 

performance comparisons. Figure 5 shows a detailed 

description of our hash join algorithm based on the 

separated filter and refinement index structure.

Fig. 5 Join algorithm based on separated filter and 
refinement index structure

Ⅳ. Performance Evaluation

4.1 Experimental Data

In the experiment, we compare our convergence 

method with some existing popular methods to 

show that our method can achieve excellent join 

query performance. The experiments compared our 

convergence method (here we call Convergence) 

with Quad[9] and Darq[10]. Our experimental 

environment uses a system with 8GB of memory 

and a  3.4-GHz frequency processor.

To ensure that our experimental results are more 

convincing, we download the LUBM dataset[19]. 

LUBM dataset contains 230,061 triples, 38,334 

subjects, 17 predicates, and 29,635 objects. We use 

12 different SPARQL queries provided by[20] and 

two chain SPARQL query types that we 

constructed based on the LUBM dataset. We use 

three SPARQL query types[21], namely star type, 

chain type, and complex type. We will use the hash 

join algorithm for these SPARQL queries.

4.2 Performance Comparison

Figure 6 shows the performance of the star type. 

We can find that the query performance of Darq is 

abysmal. The query time of Quad and Convergence 

is significantly shorter than Darq. Among them, the 

performance of Convergence is the best.

Fig. 6 Join query performance for star type

Figure 7 shows the performance of the chain 

type. The performance of Darq is still the worst. 

Quad saves nearly half of the time compared to 

Darq, and the performance of Convergence is better 

than Quad. Among the three methods, the query 

time of Convergence is the shortest.

Fig. 7 Join query performance for chain type

Figure 8 shows the performance of the complex 

type. We find that the join query performance of 

Convergence is the best. Compared to Convergence, 

the query performance of Darq and Quad is not 

good.



JKIECS, vol. 16, no. 01, 109-116, 2021

114

Fig. 8 Join query performance for complex type

Through the above experimental results, we 

observe that the performance of Darq is always the 

worst. Quad has consistently been in the middle of 

the three, and its query time is much faster than 

Darq. However, the performance of our 

Convergence method is better than Quad. In 

general, the query performance of our Convergence 

method is always better than other methods.

Ⅴ. Conclusions

In this paper, we propose a convergence indexing 

method. This method consists of separated filter 

and refinement index structures with the hybrid 

storage system. The proposed index structure 

consists of an R*-tree and K-dimensional trees. 

This convergence indexing method aims to filter 

unnecessary data and further refine the immediate 

result to improve the join query performance. In 

future work, we will continue to improve the 

performance of join queries by adopting different 

join algorithms and index structures.
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