
109

융합 인덱싱 방법에 의한 조인 쿼리 성능 최 화

짜오티엔이*ㆍ이용주**

Join Query Performance Optimization Based on Convergence Indexing Method

Tianyi Zhao*ㆍYong-Ju Lee**

요 약

RDF(Resource Description Framework) 데이터 구조는 그래 로 모델링하기 때문에, 계형 데이터베이스

와 XML 기술의 기존 솔루션은 RDF 모델에 바로 용하기 어렵다. 우리는 링크 데이터를 더욱 효과 으로

장하고, 인덱스하고, 검색하기 해 융합 인덱싱 방법을 제안한다. 이 방법은 HDD(Hard Disk Drive) 와

SSD(Solid State Drive) 디바이스에 기반한 하이 리드 스토리지 시스템을 사용하고, 불필요한 데이터를 필터

하고 간 결과를 정제하기 해 분리된 필터 정제 인덱스 구조를 사용한다. 우리는 3개의 표 조인 검색

알고리즘에 한 성능 비교를 수행했는데, 실험 결과 제안된 방법이 Quad와 Darq와 같은 다른 기존 방법들

에 비해 뛰어난 성능을 보인다.

ABSTRACT

Since RDF (Resource Description Framework) triples are modeled as graph, we cannot directly adopt existing

solutions in relational databases and XML technology. In order to store, index, and query Linked Data more efficiently,

we propose a convergence indexing method combined R*-tree and K-dimensional trees. This method uses a hybrid

storage system based on HDD (Hard Disk Drive) and SSD (Solid State Drive) devices, and a separated filter and

refinement index structure to filter unnecessary data and further refine the immediate result. We perform performance

comparisons based on three standard join retrieval algorithms. The experimental results demonstrate that our method

has achieved remarkable performance compared to other existing methods such as Quad and Darq.

키워드

Filter and Refinement Index Structure, Hybrid Storage System, Hash Join Algorithm, Linked Data, RDF.

필터 정제 인덱스 구조, 하이 리드 스토리지 시스템, 해시 조인 알고리즘, 링크드 데이터, RDF.

* 경북 학교 IT 학 컴퓨터학부(tianyi@knu.ac.kr)

** 교신 자 : 경북 학교 IT 학 컴퓨터학부

ㆍ 수 일 : 2020. 11. 11

ㆍ수정완료일 : 2020. 12. 30

ㆍ게재확정일 : 2021. 02. 17

ㆍReceived : Nov. 11. 2020, Revised : Dec. 30, 2020, Accepted : Feb. 17, 2021

ㆍCorresponding Author : Yong-Ju Lee

　School of Computer Science and Engineering, Kyungook National University,

 Email : yongju@knu.ac.kr

　

Ⅰ. Introduction

Linked Data is a new form of distributed data

on the Web which is especially suitable to be

manipulated by machines and to share

knowledge[1]. Linked Data uses RDF (Resource

Description Framework) to create typed statements

that link to anything in the world[2]. RDF is a

description method of the graph database and uses

the triple statement as the basic structure to

describe the relationship between resources. A triple

consists of three parts: subject, predicate, and

Regular paper
Journal of the KIECS. pp. 109-116, vol. 16, no. 1, Feb. 28. 2021, t. 105, pISSN 1975-8170 | eISSN 2288-2189

http://dx.doi.org/10.13067/JKIECS.2021.16.1.109

JKIECS, vol. 16, no. 01, 109-116, 2021

110

object. Since RDF data structure is modeled as a

graph, existing solutions such as relational

databases and XML technologies are not suitable

for RDF model[3]. Hence, more studies to store,

index, and query Linked Data efficiently are needed.

The existing methods are mainly divided into

two types. First, we can use efficient query

processing convenience to maintain a separate copy

of data in a centralized registry. We refer to this

as the “centralized method.” Second, we can use

link traversal to access distributed data

dynamically. We refer to the “distributed method.”

The centralized method collects data from known

sources, merges the collected information, performs

further processing, and finally stores the processed

results in a centralized registry[4]. The advantage

of this method provides the excellent query

response time. But there are several disadvantages.

Storing all data may be expensive. Users can only

use Web data that has been copied to the registry.

The distributed method performs queries over the

multiple SPARQL (Simple Protocol and RDF Query

Language)[5] endpoints that publishers provide for

their Linked Datasets[6]. However, this method

cannot guarantee that all publishers provide reliable

SPARQL endpoints for their Linked Data.

We propose a convergence method between the

centralized method and the distributed method. Our

method consists of separated filter and refinement

index structures with the hybrid storage system.

Especially, our method aims to support efficient join

query processing by quickly filtering valueless data.

The remainder of this paper is structured as

follows. Section Ⅱ describes related work. Section

Ⅲ proposes our convergence indexing method.

Section Ⅳ describes the performance evaluation.

Section Ⅴ summarizes and concludes our paper.

Ⅱ. Related Works

A generally recognized method is the “exhaustive

indexing” strategy to improve the query efficiency

(e.g., Hexastore[7] and RDF-3x[8]). They all

enumerate the various forms of triples that can be

formed under multiple permutations between the

subject, attribute, and object, and then build indexes

for them. The index created in this way happens to

be a six-fold index. That is, a B+-tree is

established according to each permutation and

combination. This strategy is derived from the

Quad index method[9]. Shortcomings of this

method: (1) Subject, attribute, attribute values of

different triples may be repeated, and such

repetitions will waste storage space. (2) Complex

queries require a large number of table join

operations. (3) When SPARQL queries are involved,

the query cost of their join operations cannot be

ignored.

With the development of Linked Data, more and

more publishers are willing to express information

with RDF data format. Many of these publishers

provide SPARQL query interfaces and expressing

data in the RDF data format to share data. These

systems can independently receive SPARQL queries

and calculate matches by customization interfaces.

These independent RDF data sources are integrated

into a system platform to form a distributed RDF

data management system. Darq[10] is the first to

discuss how to perform the SPARQL query

processing on a distributed RDF data management

system. This kind of design needs to decompose

SPARQL queries into several sub-queries in advance

and send them to their corresponding interfaces so

that these corresponding RDF data sources can

process the sub-queries and obtain partial results.

After that, the system collects these partial results

and obtains the final results by join operations.

Therefore, this method produces a large number of

intermediate results and consumes more time.

융합 인덱싱 방법에 의한 조인 쿼리 성능 최 화

111

Bentley proposed the K-dimensional tree index

structure. This data structure is widely used in the

spatial index. The advantage of this tree is that it

can solve logarithmic insertion, search, and deletion

problems. It provides many query application

protocols including scope, partial matching, nearest

neighbor, intersection query, and so on[11].

Beckmann improved R-tree and proposed

R*-tree[12]. R*-tree and R-tree[13] are identical in

structure, and they are the same in tree

construction, insertion, deletion, and retrieval. The

difference lies in the following three points: the

choice of insertion path, the split of nodes, and the

forced re-insertion algorithm.

David analyzed and compared the hash join

algorithm and the sort-merge join algorithm. The

results clearly show that the hash join algorithm is

superior to the sort-merge algorithm[14]. The

nested-loop join algorithm[15] is one of the most

commonly used join algorithms in traditional

relational databases. It is logical simple, and the

final result set is returned to the client in a

pipeline way without waiting for results computed.

Due to the explosive growth of data volume, the

large-capacity storage at low cost is a significant

requirement for storage systems[16]. The storage

device fundamentally determines a storage system's

performance it relies on. HDD (Hard Disk

Drive)[17] is still the main storage device used in

the storage system. However, due to the limitation

of the mechanical movement of the magnetic head,

the random access performance of the disk is the

bottleneck for a long time. SSD (Solid State

Drive)[18] has emerged in recent years with the

advantages of good random access performance,

small size, and low energy consumption. Although

there are still restrictions such as high price, small

capacity, erase-before-write, and durability, it can

form an excellent complement to HDD.

Ⅲ. Convergence Indexing Method

3.1 Hybrid Storage System

The hybrid storage system is to combine SSD

with HDD. Frequently accessed data (so called hot

data) can be stored on SSD and searched more

rapidly than they are stored on HDD. This

structure can improve the performance ratio, service

life, reliability, capacity, and other indicators of the

entire system. Hence, we adapt this hybrid storage

system.

3.2 Separated Filter and Refinement Index

 Structure

In our convergence method, we first convert

RDF data into hash values. In our structure, RDF

tuples consist of points in n-dimensional data space

represented by compressed hash values. We convert

long string literals to hash values, which can

significantly reduce memory stress. Then, we will

store the data in the separated filter and refinement

index structure. The purpose of this structure is to

filter unnecessary data and further refine the

immediate result to improve the join query

performance. After filter and refinement processing,

we will execute the hash join algorithm to obtain

final results.

(1) Filter Phase

The first phase of our separated filter and

refinement index structure is the filtering process.

We use an R
*
-tree[12] in this phase as shown in

figure 1.

Fig. 1 R*-tree

JKIECS, vol. 16, no. 01, 109-116, 2021

112

R*-tree, the most popular variant of R-tree, is

well suited for disk use, and it consists of leaf and

non-leaf nodes. We use R
*
-tree to reduce

unnecessary spatial search as much as possible.

With R
*
-tree, we can quickly select the minimum

bounding boxes (MBBs) that contain all possible

RDF tuples that match the join triple query pattern.

All R
*
-tree nodes are stored in HDD. Figure 2

shows the query performance for different SPARQL

query types when R
*
-tree is kept in SSD and

HDD, respectively. We use three different join

algorithms: hash join algorithm, nested-loop join

algorithm, and sort-merge algorithm. We record the

query time of different SPARQL query types when

we use different join algorithms and calculate the

average of each SPARQL query type to analyze the

performance of R
*
-tree on SSD and HDD.

Experimental result shows that the performance

difference of R*-tree on SSD and HDD is not

obvious. Thus, we use HDD for R*-tree since the

cost of SSD is higher than that of HDD.

Fig. 2 R*-tree performance on SSD and HDD

(2) Refinement Phase

 The second phase is K-dimensional tree [10]

groups, which play as refinement processing. Figure

3 shows K-dimensional tree. After identifying all

candidate MBBs in the first phase, we perform the

second phase, where further refine the results

obtained in the previous filtering processing using

K-dimensional trees. Then, we execute the hash

join algorithm to calculate the data in

K-dimensional trees and get the final results. We

put K-dimensional trees in SSD since

K-dimensional trees are great for memory because

of their good storage utilization, fast search, and

fast update. The random read performance for the

hash join algorithm is also excellent in SSD.

Fig. 3 K-dimensional tree

(3) Hash Join Algorithm

To determine which of three join algorithms (i.e.,

hash join, nested-loop join, and sort-merge join

algorithms) has the best performance, we conduct

experiments on three SPARQL query types: star

type, chain type, and complex type. We record the

query time of different SPARQL query types when

using different join algorithms to analyze the

performance of each join algorithm.

Fig. 4 Comparisons of three join algorithms

As shown in figure 4, the hash join algorithm

has the most excellent performance among the three

join algorithms through query performance

융합 인덱싱 방법에 의한 조인 쿼리 성능 최 화

113

comparisons of the three join algorithms. The hash

join algorithm is very stable in the overall

performance comparisons. Figure 5 shows a detailed

description of our hash join algorithm based on the

separated filter and refinement index structure.

Fig. 5 Join algorithm based on separated filter and
refinement index structure

Ⅳ. Performance Evaluation

4.1 Experimental Data

In the experiment, we compare our convergence

method with some existing popular methods to

show that our method can achieve excellent join

query performance. The experiments compared our

convergence method (here we call Convergence)

with Quad[9] and Darq[10]. Our experimental

environment uses a system with 8GB of memory

and a 3.4-GHz frequency processor.

To ensure that our experimental results are more

convincing, we download the LUBM dataset[19].

LUBM dataset contains 230,061 triples, 38,334

subjects, 17 predicates, and 29,635 objects. We use

12 different SPARQL queries provided by[20] and

two chain SPARQL query types that we

constructed based on the LUBM dataset. We use

three SPARQL query types[21], namely star type,

chain type, and complex type. We will use the hash

join algorithm for these SPARQL queries.

4.2 Performance Comparison

Figure 6 shows the performance of the star type.

We can find that the query performance of Darq is

abysmal. The query time of Quad and Convergence

is significantly shorter than Darq. Among them, the

performance of Convergence is the best.

Fig. 6 Join query performance for star type

Figure 7 shows the performance of the chain

type. The performance of Darq is still the worst.

Quad saves nearly half of the time compared to

Darq, and the performance of Convergence is better

than Quad. Among the three methods, the query

time of Convergence is the shortest.

Fig. 7 Join query performance for chain type

Figure 8 shows the performance of the complex

type. We find that the join query performance of

Convergence is the best. Compared to Convergence,

the query performance of Darq and Quad is not

good.

JKIECS, vol. 16, no. 01, 109-116, 2021

114

Fig. 8 Join query performance for complex type

Through the above experimental results, we

observe that the performance of Darq is always the

worst. Quad has consistently been in the middle of

the three, and its query time is much faster than

Darq. However, the performance of our

Convergence method is better than Quad. In

general, the query performance of our Convergence

method is always better than other methods.

Ⅴ. Conclusions

In this paper, we propose a convergence indexing

method. This method consists of separated filter

and refinement index structures with the hybrid

storage system. The proposed index structure

consists of an R*-tree and K-dimensional trees.

This convergence indexing method aims to filter

unnecessary data and further refine the immediate

result to improve the join query performance. In

future work, we will continue to improve the

performance of join queries by adopting different

join algorithms and index structures.

Acknowledgement

This research was supported by Basic Science

Research Program through the National Research

Foundation of Korea (NRF) funded by the Ministry

of Education (No. 2016R1D1A1B02008553).

References

[1] M. Poblet, P. Casannovas, and V.

Rodriguez-Doncel, Linked Democracy: Foundations,

Tools, and Applications, Springer, 2019, pp. 1-25.

[2] H. S. Seok and Y. J. Lee, “Ontology-based IoT

Context Information Modeling and

Semantic-based IoT Mashup Services

Implementation,” J. of the Korea Institute of

Electronic Communication Science, vol. 14, no. 4,

2019, pp. 71-76.

[3] M. Svoboda, “Efficient querying of distributed

Linked Data,” In Proc. 2011 Joint EDBT/ICDT PhD

Workshop, Uppsala Sweden, 2011, pp. 45-50.

[4] A. Harth, K. Hose, M. Karnstedt, A. Polleres, K.

U. Satler, and J. Umbrich, “Data summaries for

on-demand queries over Linked Data,” In Proc.

19th International Conference on World Wide Web

(WWW), Raleigh, North Carolina, USA, Apr.

2010, pp. 411-420.

[5] G. Swathi, S. M. Hussain, P. Kanakam, and D.

Suryanarayana, “SPARQL for semantic

information retrieval from RDF knowledge base,”

Int. J. of Engineering Trends and Technology (IJETT),

vol. 41, no. 7, 2016, pp. 351-354.

[6] O. Hartig, “An overview on execution strategies

for Linked Data queries,” Datenbank Spektrum,

vol. 13, issue 2, 2013, pp. 89-99.

[7] C. Weiss, P. Karras, and A. Bernstein, “Hexastore:

sextuple indexing for Semantic Web data

management,” In Proc. Very Large Data Base

(VLDB) Endowment, vol. 1, no. 1, 2008, pp.

1008-1019.

[8] T. Neumann and G. Weikum, “The RDF-3X

engine for scalable management of RDF data,” In

Proc. Very Large Data Base (VLDB) Endowment,

vol. 19, no. 1, 2010, pp. 91-113.

[9] Y. X. Sun and Y. J. L, “Storage and Retrieval

Architecture based on Key-Value Solid State

Device,“ J. of the Korea Institute of Electronic

Communication Science, vol. 15, no. 1, 2020, pp.

24-52.

융합 인덱싱 방법에 의한 조인 쿼리 성능 최 화

115

[10] B. Quilitz and U. Leser, “Querying distributed

RDF data sources with SPARQL”, In Proc. 5th

European Semantic Web Conf. (ESWC), Tenerife,

Canary Islands, Spain, June 2008, pp. 524-538.

[11] M. Priti and H. E. Margaret, “Join processing in

relational databases,” ACM Computing Surveys,

vol. 24, no. 1, 1992, pp. 63-113.

[12] N. Beckmann, H. P. Kriegel, R. Schneider, and

B. K. Seeger, “The R*-tree: An efficient and

robust access method for points and rectangles,”

In Proc. ACM SIGMOD International Conference on

Management of Data, Atlantic City New Jersey,

USA, 1990, pp. 322-331.

[13] A, Guttman, “R-trees: A dynamic index structure

for spatial searching,” In Proc. ACM International

Conference on Management of Data, vol. 14, no. 2,

1984, pp. 47–57.

[14] J. D. David and H. G.Robert, "Multiprocessor

hash-based join algorithms," In Proc. 11th

international conference on Very Large Data Bases,

Stockholm, Sweden, 1985.

[15] T. David, C. H. C. Leung, W. Rahayu, and S.

Goel, High-Performance Parallel Database Processing

and Grid Databases, New York, Wiley, 2008.

[16] J. Gray, “What next? A dozen information

technology research goals ACM turing award

lecture,” J. of the ACM, vol. 50, no. 1, 2003, pp.

41–57.

[17] S. Nedev and V. Kamenov, “HDD performance

research”, In Proc. 8th International Scientific

Conference Computer Science, Greece, Kavala, 2018,

pp. 106-111.

[18] N. Agrawal, V. Prabhakaran, and T. Wobber,

“Design tradeoffs for SSD performance,”

USENIX Annual Technical Conf., Boston,

Massachusetts, USA, June 2008, pp. 57-70.

[19] Y. Guo, Z. Pan, and J. Heflin, “An Evaluation

of Knowledge Base Systems for Large OWL

Datasets”, In Proc. 3rd International Semantic Web

Conference, Hiroshima, Japan, 2004, pp. 274-288.

[20] C. R. Aberger, S. Tu, K. Olukotun, and C. Re,

“Old techniques for new join algorithms: A case

study in RDF processing,” In Proc. IEEE 32nd

International Conference on Data Engineering

Workshops, Helsinki, Finland, 2016, pp. 97-102.

[21] K. Lee and L. Liu, “Scaling queries over big

RDF graphs with semantic hash partitioning,” In

Proc. Very Large Data Base (VLDB) Endowment,

vol. 6, no. 14, 2013, pp. 1894-1905.

자 소개

짜오티엔이(Tianyi Zhao)

2019년 경북 학교 컴퓨터학과

졸업(공학학사)

2019년 ~ 재 경북 학교

학원 컴퓨터학과(공학석사)

※ 심분야 : 시맨틱 웹, 빅데이터, 데이터베이

스시스템

이용주(Yong-Ju Lee)

1985년 한국과학기술원 정보검

색 공(공학석사)

1997년 한국과학기술원 컴퓨터

공학 공(공학박사)

1998년 8월 ∼ 재 경북 학교 IT 학 컴퓨터학

부 교수

※ 심분야 : 링크드 데이터, 시맨틱 웹, 빅데이

터, 지식 그래

