References
- D. Y. Lee, "Analysis of Sewer Pipe Defect and Ground Subsidence Risk By Using CCTV and GPR Monitering Results", J. Korean Geosynthetics Society, Vol. 17, No. 3, pp. 47-55, Sep. 2018. DOI: http://dx.doi.org/10.12814/jkgss.2018.17.3.047
- Daniels, David J. "Ground penetrating radar.", John Wiley & Sons, Inc, 2005.
- Lee, JaeWon, DoHyeon Kim, and Yoon Kim. "Online Video Synopsis via Multiple Object Detection.", Journal of the Korea Society of Computer and Information, Vol. 24, No. 8, pp. 19-28, Aug. 2019. DOI: https://doi.org/10.9708/jksci.2019.24.08.019
- Lee, Dong-Ryeol, and Yoon Kim. "Multi-scale face detector using anchor free method." Journal of the Korea Society of Computer and Information, Vol. 25, No. 7, pp. 47-55, Jul. 2020. DOI: https://doi.org/10.9708/jksci.2020.25.07.047
- J. Chae, H. Ko, B. Lee, and N. Kim, "A Study on the Pipe Position Estimation in GPR Images Using Deep Learning Based Convolutional Neural Network," Journal of Internet Computing and Services, Vol. 20, No. 4, pp. 39-46, Aug. 2019. DOI: https://doi.org/10.7472/jksii.2019.20.4.39
- H.-Y. Ko and N. Kim, "Performance Analysis of Detecting buried pipelines in GPR images using Faster R-CNN", Journal of Convergence for Information Technology, Vol. 9, No. 5, pp. 21-26, May 2019. DOI: https://doi.org/10.22156/CS4SMB.2019.9.5.021
- Kim, Y. T., Kim, B., Kim, J. W. Park, H. M. , and Yoon, J. S. "Determining the Optimal Frequency of Ground Penetrating Radar for Detecting Voids in Pavements", Int. J. Highw. Eng, Vol. 18, No. 2, pp. 37-42, Mar. 2016. DOI: https://doi.org/10.7855/IJHE.2016.18.2.037
- Bianchini Ciampoli, Luca, et al. "Signal processing of GPR data for road surveys." Geosciences, Vol. 9, No. 2, pp. 96, Feb. 2019. DOI: https://doi.org/10.3390/geosciences9020096
- Park, Byeongjin, et al. "Underground object classification for urban roads using instantaneous phase analysis of Ground-Penetrating Radar (GPR) Data." Remote Sensing, Vol. 10, No. 9, pp. 1417, Sep. 2018. DOI: https://doi.org/10.3390/rs10091417
- Kim, Namgyu, et al. "Deep learning-based underground object detection for urban road pavement." International Journal of Pavement Engineering, Vol. 21, No. 13, pp. 1638-1650, Dec. 2020. DOI: https://doi.org/10.1080/10298436.2018.1559317
- Dinh, Kien, Nenad Gucunski, and Trung H. Duong. "An algorithm for automatic localization and detection of rebars from GPR data of concrete bridge decks." Automation in Construction, Vol. 89, pp. 292-298, May. 2018. DOI: https://doi.org/10.1016/j.autcon.2018.02.017
- Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431-3440, Mar. 2015.
- Cicek, Ozgun, et al. "3D U-Net: learning dense volumetric segmentation from sparse annotation." International conference on medical image computing and computer-assisted intervention, pp. 424-432, Jun. 2016. DOI: https://doi.org/10.1007/978-3-319-46723-8_49
- Huang, Yi-Jie, et al. "3-D RoI-Aware U-Net for Accurate and Efficient Colorectal Tumor Segmentation." IEEE Transactions on Cybernetics, Feb. 2020. DOI: https://doi.org/10.1109/tcyb.2020.2980145
- Shorten, Connor, and Taghi M. Khoshgoftaar. "A survey on image data augmentation for deep learning." Journal of Big Data, Vol. 6, No.1, pp. 60, Jul. 2019. DOI: https://doi.org/10.1186/s40537-019-0197-0
- Hyun, Seung-Yeup. "Characteristic Changes in Ground-Penetra ting Radar Responses from Dielectric-Filled Nonmetallic Pipes Buried in Inhomogeneous Ground.", The Journal of Korean Institute of Electromagnetic Engineering and Science, Vol. 30, No. 5, pp. 399-406, May 2019. DOI: https://doi.org/10.5515/KJKIEES.2019.30.5.399
- Dice, Lee R. "Measures of the amount of ecologic association between species.", Ecology, Vol. 26, No. 3, pp. 297-302, Jul. 1945. DOI: https://doi.org/10.2307/1932409
Cited by
- SKU-Net: Improved U-Net using Selective Kernel Convolution for Retinal Vessel Segmentation vol.26, pp.4, 2021, https://doi.org/10.9708/jksci.2021.26.04.029