DOI QR코드

DOI QR Code

Conduction Mechanism of Charge Carriers in Electrodes and Design Factors for the Improvement of Charge Conduction in Li-ion Batteries

  • Akhtar, Sophia (Department of Energy Science, Sungkyunkwan University) ;
  • Lee, Wontae (Department of Energy Science, Sungkyunkwan University) ;
  • Kim, Minji (Department of Energy Science, Sungkyunkwan University) ;
  • Park, Min-Sik (Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University) ;
  • Yoon, Won-Sub (Department of Energy Science, Sungkyunkwan University)
  • Received : 2020.10.16
  • Accepted : 2020.11.28
  • Published : 2021.02.28

Abstract

In-depth knowledge of electrode processes is crucial for determining the electrochemical performance of lithium-ion batteries (LIBs). In particular, the conduction mechanisms of charged species in the electrodes, such as lithium ions (Li+) and electrons, are directly correlated with the performance of the battery because the overall reaction is dependent on the charge transport behavior in the electrodes. Therefore, it is necessary to understand the different electrochemical processes occurring in electrodes in order to elucidate the charge conduction phenomenon. Thus, it is essential to conduct fundamental studies on electrochemical processes to resolve the technical challenges and issues arising during the ionic and electronic conduction. Furthermore, it is also necessary to understand the transport of charged species as well as the predominant factors affecting their transport in electrodes. Based on such in-depth studies, potential approaches can be introduced to enhance the mobility of charged entities, thereby achieving superior battery performances. A clear understanding of the conduction mechanism inside electrodes can help overcome challenges associated with the rapid movement of charged species and provide a practical guideline for the development of advanced materials suitable for high-performance LIBs.

Keywords

References

  1. M. Wang, Y. Tian, W. Liu, R. Zhang, L. Chen, L. Yinda , L. Xin, J. Clean. Prod., 2020, 265, 121769. https://doi.org/10.1016/j.jclepro.2020.121769
  2. L. Zhang, X. Qin, S. Zhao, A. Wang, J. Luo, Z. L. Wang, F. Kang, Z. Lin, B. Li, Adv. Mater., 2020, 33, 1908445.
  3. Q. Zhang, N. Cui, Y. Li, B. Duan, C. Zhang, J. Energy Storage., 2020, 27, 100945. https://doi.org/10.1016/j.est.2019.100945
  4. Z. Chen, J. Lu, B. Liu, N. Zhou, and S. Li, Energies, 2020, 13(10), 2543. https://doi.org/10.3390/en13102543
  5. Y. Orikasa, Y. Gogyo, H. Yamashige, M. Katayama, K. Chen, T. Mori, K. Yamamoto, T. Masese, Y. Inada, T. Ohta, Z. Siroma, S. Kato, H. Kinoshita, H. Arai, Z. Ogumi, Y. Uchimoto, Sci. Rep., 2016, 6, 26382. https://doi.org/10.1038/srep26382
  6. Y. Itou, N. Ogihara, S. Kawauchi, J. Phys. Chem. C., 2020, 124(10), 5559-5564. https://doi.org/10.1021/acs.jpcc.9b11929
  7. A. Chu, A. Allam, A. Cordoba Arenas, G. Rizzoni,S. Onori, J. Power Sources,. 2020, 478, 228991. https://doi.org/10.1016/j.jpowsour.2020.228991
  8. T. Fukutsuka, K. Koyamada, S. Maruyama, K. Miyazaki, T. Abe, Electrochim. Acta,. 2016, 199, 380-387. https://doi.org/10.1016/j.electacta.2016.03.049
  9. A. Yano, K. Hikima, J. Hata, K. Suzuki, M. Hirayama, R. Kanno, J. Electrochem. Soc., 2018, 165(14), A3221. https://doi.org/10.1149/2.0151814jes
  10. X. Yu, A. Manthiram, Energy Environ. Sci., 2018, 11(3), 527-543. https://doi.org/10.1039/c7ee02555f
  11. K. Xu, A. Von Cresce, J. Mater. Chem., 2011, 21(27), 9849-9864. https://doi.org/10.1039/c0jm04309e
  12. M. Park, X. Zhang, M. Chung, G.B. Less, A.M. Sastry, J. Power Sources., 2010, 195(24), 7904-7929. https://doi.org/10.1016/j.jpowsour.2010.06.060
  13. C.J. Bae, C.K. Erdonmez, J.W. Halloran, Y.M. Chiang, Adv. Mater., 2013, 25(9), 1254-1258. https://doi.org/10.1002/adma.201204055
  14. D. Kehrwald, P.R. Shearing, N.P. Brandon, P.K. Sinha, S.J. Harris, J. Electrochem. Soc., 2011, 158(12), A1393. https://doi.org/10.1149/2.079112jes
  15. Y. Ren, A.R. Armstrong, F. Jiao, P.G. Bruce, J. Am. Chem. Soc., 2010, 132(3), 996-1004. https://doi.org/10.1021/ja905488x
  16. B. Vijayaraghavan, D.R. Ely, Y.-M. Chiang, R. Garcia-Garcia, R.E. Garcia, J. Electrochem. Soc., 2012, 159(5), A548. https://doi.org/10.1149/2.jes113224
  17. R.E. Hummel, Electronic Properties of Materials-Springer-Verlag., 2011.
  18. H.L. Pan, Y.S. Hu, H. Li, L.Q. Chen, Chinese Phys. B., 2011, 20(11), 118202. https://doi.org/10.1088/1674-1056/20/11/118202
  19. G.F. Yang, K.Y. Song, S.K. Joo, J. Mater. Chem. A., 2014, 2(46), 19648-19652. https://doi.org/10.1039/C4TA03890H
  20. S.W. Oh, S.-T. Myung, H.J. Bang, C.S. Yoon, K. Amine, Y.-K. Sun, Electrochem. Solid-State Lett., 2009, 12(9) , A181. https://doi.org/10.1149/1.3143901
  21. H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer-Verlag Berlin Heidelberg., 2003, 1-651.
  22. A. V. Chadwick, Encycl. Appl. Phys. 2003, 193-222.
  23. F. Ning, S. Li, B. Xu, C. Ouyang, Solid State Ionics 2014, 263, 46-48. https://doi.org/10.1016/j.ssi.2014.05.008
  24. Y.C. Chen, C.Y. Ouyang, L.J. Song, Z.L. Sun, Electrochim. Acta., 2011, 56(17), 6084-6088. https://doi.org/10.1016/j.electacta.2011.04.077
  25. N. Ogihara, S. Kawauchi, C. Okuda, Y. Itou, Y. Takeuchi, Y. Ukyo, J. Electrochem. Soc., 2012, 159(7), A1034. https://doi.org/10.1149/2.057207jes
  26. N. Ogihara, Y. Itou, T. Sasaki, Y. Takeuchi, J. Phys. Chem. C., 2015, 119(9), 4612-4619. https://doi.org/10.1021/jp512564f
  27. T. Abe, H. Fukuda, Y. Iriyama, Z. Ogumi, J. Electrochem. Soc. 2004, 151(8), A1120. https://doi.org/10.1149/1.1763141
  28. Z. Ogumi, Electrochemistry, 2010, 78(5), 319-324. https://doi.org/10.5796/electrochemistry.78.319
  29. T.R. Jow, S.A. Delp, J.L. Allen, J.-P. Jones, M.C. Smart, J. Electrochem. Soc., 2018, 165(2), A361. https://doi.org/10.1149/2.1221802jes
  30. Y. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Chem. Soc. Rev. 2015, 44(17), 5926-5940. https://doi.org/10.1039/c4cs00442f
  31. H. Gao, Q. Wu, Y. Hu, J.P. Zheng, K. Amine, Z. Chen, J. Phys. Chem. Lett. 2018, 9(17), 5100-5104. https://doi.org/10.1021/acs.jpclett.8b02229
  32. P. Arora, Z. Zhang, Chem. Rev 2004, 104, 4419-4462. https://doi.org/10.1021/cr020738u
  33. R. Pan, Z. Wang, R. Sun, J. Lindh, K. Edstrom, M. Stromme, L. Nyholm, Cellulose 2017, 24(7), 2903-2911. https://doi.org/10.1007/s10570-017-1312-z
  34. S.J. Kim, M.C. Kim, D.H. Kwak, D.M. Kim, G.H. Lee, H.S. Choe, K.W. Park, J. Power Sources,. 2016, 304, 119-127. https://doi.org/10.1016/j.jpowsour.2015.11.020
  35. S. Kalluri, M. Yoon, M. Jo, S. Park, S. Myeong, J. Kim, S.X. Dou, Z. Guo, J. Cho, Adv. Energy Mater., 2017, 7(1), 1601507 https://doi.org/10.1002/aenm.201601507
  36. J. Qian, L. Liu, J. Yang, S. Li, X. Wang, H.L. Zhuang, Y. Lu, Nat. Commun., 2018, 9(1), 1-11. https://doi.org/10.1038/s41467-017-02088-w
  37. W. Lee, D. Lee, Y. Kim, W. Choi, W.-S. Yoon, J. Mater. Chem. A 2020, 8(20), 10206-10216. https://doi.org/10.1039/d0ta01083a
  38. K.X. Wang, X.H. Li, J.S. Chen, Adv. Mater., 2015, 27(3), 527-545. https://doi.org/10.1002/adma.201402962
  39. C. Jiang, M. Wei, Z. Qi, T. Kudo, I. Honma, H. Zhou, J. Power Sources 2007, 166(1), 239-243. https://doi.org/10.1016/j.jpowsour.2007.01.004
  40. H. Liu, A. Banerjee, B. Ziv, K.J. Harris, N.P.W. Pieczonka, S. Luski, G.A. Botton, G.R. Goward, D. Aurbach, I.C. Halalay, ACS Appl. Energy Mater. 2018, 1(5), 1878-1882. https://doi.org/10.1021/acsaem.8b00436
  41. M. Ling, J. Qiu, S. Li, C. Yan, M.J. Kiefel, G. Liu, S. Zhang, Nano Lett. 2015, 15(7), 4440-4447. https://doi.org/10.1021/acs.nanolett.5b00795
  42. J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin, M. Yang,D. Kisailus, H. Zhao, Z. Tang, D. Wang, Angew. Chemie., 2013, 52(25), 6417-6420. https://doi.org/10.1002/anie.201301622
  43. J.M. Feckl, K. Fominykh, M. Dblinger, D. FattakhovaRohlfing, T. Bein, Angew. Chemie., 2012, 51(30),7459-7463. https://doi.org/10.1002/anie.201201463
  44. Z.S. Wu, W. Ren, L. Xu, F. Li, H.M. Cheng, ACS Nano 2011, 5(7), 5463-5471. https://doi.org/10.1021/nn2006249
  45. W. Lee, S. Muhammad, T. Kim, H. Kim, E. Lee, M. Jeong, S. Son, J.H. Ryou, W.S. Yoon, Adv. Energy Mater. 2018, 8(4), 1701788. https://doi.org/10.1002/aenm.201701788
  46. A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, Nat. Mater,. 2010, 9(4), 353-358. https://doi.org/10.1038/nmat2725

Cited by

  1. Dual lithium storage of Pt electrode: alloying and reversible surface layer vol.9, pp.34, 2021, https://doi.org/10.1039/d1ta04379j
  2. Physicochemical nature of polarization components limiting the fast operation of Li-ion batteries vol.2, pp.4, 2021, https://doi.org/10.1063/5.0068493
  3. Destabilization of the surface structure of Ni-rich layered materials by water-washing process vol.44, 2021, https://doi.org/10.1016/j.ensm.2021.11.006
  4. Inhomogeneous lithium-storage reaction triggering the inefficiency of all-solid-state batteries vol.66, 2021, https://doi.org/10.1016/j.jechem.2021.08.017