DOI QR코드

DOI QR Code

The Overall Performance Improvement of Microbial Fuel Cells Connected in Series with Dairy Wastewater Treatment

  • Choudhury, Payel (Department of Electrical Engineering, National Institute of Technology Agartala) ;
  • Bhunia, Biswanath (Department of Bio Engineering, National Institute of Technology Agartala) ;
  • Bandyopadhyay, Tarun Kanti (Department of Chemical Engineering, National Institute of Technology Agartala) ;
  • Ray, Rup Narayan (Department of Electrical Engineering, National Institute of Technology Agartala)
  • Received : 2020.07.22
  • Accepted : 2020.09.11
  • Published : 2021.02.28

Abstract

To improve the potential of single chamber microbial fuel cells (SCMFCs) as an applicable technology, the main challenge is a practical application for larger scales bioenergy production from potent exoelectrogenic microorganism with real dairy wastewater. To increase power generation, three individual MFCs were together operated in series best under the fed batch condition for 15 days. The volume of MFC 1 and MFC 2 is "300 mL" and MFC 3 is "500 mL" respectively. The individual MFCs 1, MFC 2 and MFC 3 gives an open circuit voltage of 0.60 V, 0.66 V and 0.55 V and result in total working voltage when connected in series of 1.745V, which lead an LED to glow. The maximum power densities obtained from MFC 1, MFC 2 and MFC 3 are 62 mW/㎡, 50 mW/㎡ and 45 mW/㎡ (normalized to the surface area of the anodic electrode, which was 50 ㎠ for all three MFCs), and corresponding to current densities of 141 mA/㎡, 155 mA/㎡ and 123 mA/㎡, respectively. Therefore this work suggests the cheapest way to connect microbial fuel cells in series to gain power with the lowest operating cost and chemical oxygen demand (COD) removal.

Keywords

References

  1. S. Nara, , R. Kandpal, V. Jaiswal, S. Augustine, S. Wahie, J.G. Sharma, Biosens. Bioelectron., 2020, 112323. https://doi.org/10.1016/j.bios.2020.112323
  2. H. Lund, Energy, 2007. 32(6), 912-919. https://doi.org/10.1016/j.energy.2006.10.017
  3. P. Choudhury, U. S. P. Uday, N. Mahata, O. N. Tiwari, R. N. Ray, T. K. Bandyopadhyay, B. Bhunia, Renew. Sust. Energ. Rev., 2017, 79, 372-389. https://doi.org/10.1016/j.rser.2017.05.098
  4. M.A. Hanjra and M.E. Qureshi, Food Policy., 2010. 35(5), 365-377. https://doi.org/10.1016/j.foodpol.2010.05.006
  5. K.R. Saravanan and N. Kalaiselvi, Carbon., 2015, 81, 43-53. https://doi.org/10.1016/j.carbon.2014.09.021
  6. P. Choudhury, U. S. Prasad Uday, T. K. Bandyopadhyay, R. N. Ray, B. Bhunia, Bioengineered., 2017, 8(5), 471-487. https://doi.org/10.1080/21655979.2016.1267883
  7. P. Choudhury, R. N. Ray, T. K. Bandyopadhyay, B. Basak, M. Muthuraj, Int. J. Hydrog. Energy., 2020.
  8. M. Zhou, H. Wang, D. J. Hassett, T. Gu, J. Chem. Technol. Biotechnol., 2013, 88(4), 508-518. https://doi.org/10.1002/jctb.4004
  9. P. Choudhury, R. N. Ray, T. K. Bandyopadhyay, B. Bhunia, Arab J Sci Eng., 2020, 1-11.
  10. American Public Health Association, A., Standard methods for the examination of water and wastewater. 1998.
  11. P. Choudhury, R. N. Ray, T. K. Bandyopadhyay, Int. J. Renew. Energy Res., 2018, 9(1-2), 191-197.
  12. P. Arulazhagan, S. A. Kumar, S. Kaliappan, I. T. Yeom, J. R. Banu, Biomass Bioenergy., 2014, 69, 249-254. https://doi.org/10.1016/j.biombioe.2014.07.024
  13. P. Choudhury, R. N. Ray, T. K.Bandyopadhyay, B. Bhunia, Fuel., 2020, 266, 117073. https://doi.org/10.1016/j.fuel.2020.117073
  14. B.E. Logan and J.M. Regan, Microbial fuel cells-challenges and applications. 2006.
  15. B.E. Logan, Microbial fuel cells, a John Wiley & Sons., 2007.
  16. A.K. Manohar, O. Bretschger, K. H. Nealson, F. Mansfeld, Bioelectrochemistry., 2008, 72(2), 149-154. https://doi.org/10.1016/j.bioelechem.2008.01.004
  17. T. Ogi, R. Honda, K. Tamaoki, N. Saitoh, Y. Konishi, Powder Technol., 2011, 205(1-3), 143-148. https://doi.org/10.1016/j.powtec.2010.09.004
  18. L. Zhang, C. Li, L. Ding, K. Xu, H. Ren, J. Chem. Technol. Biotechnol., 2011, 86(9), 1226-1232. https://doi.org/10.1002/jctb.2641
  19. S. E. Oh, B. E. Logan, J. Power Sources., 2007, 167(1), 11-17. https://doi.org/10.1016/j.jpowsour.2007.02.016
  20. P. Choudhury, R. N. Ray, T. K. Bandyopadhyay, O. N. Tiwari, B. Bhunia, Int. J. Hydrog. Energy., 2020.
  21. K. Cirik, Appl. Biochem. Biotechnol., 2014, 173(1), 205-214. https://doi.org/10.1007/s12010-014-0834-1
  22. S. Wu, H. Li, X. Zhou, P. Liang, X. Zhang, Y. Jiang, X.Huang, Water Res., 2016. 98, 396-403. https://doi.org/10.1016/j.watres.2016.04.043
  23. A.D. Priya, Y.P. Setty, Fuel, 2019, 246, 75-78. https://doi.org/10.1016/j.fuel.2019.02.100
  24. R. A.Rozendal, H. V.Hamelers, K. Rabaey, J. Keller, C. J. Buisman, Trends Biotechnol., 2008. 26(8), 450-459. https://doi.org/10.1016/j.tibtech.2008.04.008
  25. P.Aelterman, M. Versichele, M. Marzorati, N. Boon, W. Verstraete, Bioresour. Technol., 2008, 99(18), 8895-8902. https://doi.org/10.1016/j.biortech.2008.04.061
  26. M. Rahimnejad, G. D. Najafpour, A. A. Ghoreyshi, F. Talebnia, G. C. Premier, G.Bakeri, S. E. Oh, J. Microbiol., 2012, 50(4), 575-580. https://doi.org/10.1007/s12275-012-2135-0
  27. G. Jadhav, M. M. Ghangrekar, Bioresour. Technol., 2009, 100(2), 717-723. https://doi.org/10.1016/j.biortech.2008.07.041
  28. B. Bhunia, B. Basak, P. Bhattacharya, A. Dey, J Microbiol Biotechnol., 2012, 22(12), 1749-1757. https://doi.org/10.4014/jmb.1210.10038
  29. A. Cornish-Bowden, Perspectives in Science., 2015, 4, 3-9. https://doi.org/10.1016/j.pisc.2014.12.002
  30. D.Y. Lyon, F. Buret, T. M. Vogel, J. M. Monier, Bioelectrochemistry, 2010, 78(1), 2-7. https://doi.org/10.1016/j.bioelechem.2009.09.001
  31. D.R. Bond, D.R. Lovley, Appl. Environ. Microbiol., 2003, 69(3), 1548-1555. https://doi.org/10.1128/AEM.69.3.1548-1555.2003
  32. A. Gurung, S. E. Oh, Part A: Recovery. Utilization. and E. Effects, 2012, 34(17), 1591-1598. https://doi.org/10.1080/15567036.2011.629277
  33. V. J. Watson, B. E. Logan, Electrochem commun., 2011, 13(1), 54-56. https://doi.org/10.1016/j.elecom.2010.11.011
  34. I. Gajda, O. Obata, M. J. Salar-Garcia, J. Greenman, I. A. Ieropoulos, Bioelectrochemistry., 2020, 133, 107459. https://doi.org/10.1016/j.bioelechem.2020.107459
  35. S. V. Mohan, G. Mohanakrishna, G. Velvizhi, V. L. Babu, P. N. Sarma, Biochem. Eng. J., 2010, 51(1-2), 32-39. https://doi.org/10.1016/j.bej.2010.04.012
  36. K. J. Yoon, P. Zink, S. Gopalan, U. B. Pal, J. Power Sources., 2007, 172(1), 39-49. https://doi.org/10.1016/j.jpowsour.2007.03.003
  37. Liu, H., R. Ramnarayanan, B.E. Logan, Environ. Sci. Technol., 2004, 38(7), 2281-2285. https://doi.org/10.1021/es034923g
  38. C. W. Lin, C. H. Wu, W. T. Huang, S. L. Tsai, Fuel., 2015, 144, 1-8. https://doi.org/10.1016/j.fuel.2014.12.009
  39. S. Mateo, P. Canizares, M. A. Rodrigo, F. J. Fernandez-Morales, J. Power Sources., 2019, 412, 640-647. https://doi.org/10.1016/j.jpowsour.2018.12.007
  40. C.Santoro, M. Kodali, N. Shamoon, A. Serov, F. Soavi, , I. Merino-Jimenez, P. Atanassov, J. Power Sources., 2019, 412, 416-424. https://doi.org/10.1016/j.jpowsour.2018.11.069
  41. M. Hu, X. Li, J. Xiong, L. Zeng, Y. Huang, Y. Wu, W. Li, Biosens. Bioelectron., 2019, 142, 111594. https://doi.org/10.1016/j.bios.2019.111594
  42. J. Prasad, R. K. Tripathi, J. Power Sources., 2020, 450, 227721. https://doi.org/10.1016/j.jpowsour.2020.227721
  43. M H. Mehravanfar, M. A. Mahdavi, R. Gheshlaghi, Int. J. Hydrog. Energy., 2019, 44(36), 20355-20367. https://doi.org/10.1016/j.ijhydene.2019.06.010