DOI QR코드

DOI QR Code

Synthesis of Novel (Be,Mg,Ca,Sr,Zn,Ni)3O4 High Entropy Oxide with Characterization of Structural and Functional Properties and Electrochemical Applications

  • Received : 2020.06.22
  • Accepted : 2020.09.14
  • Published : 2021.02.28

Abstract

The new emerging "High entropy materials" attract the attention of the scientific society because of their simpler structure and spectacular applications in many fields. A novel nanocrystalline high entropy (Be,Mg,Ca,Sr,Zn,Ni)3O4 oxide has been successfully synthesized through mechanochemical treatment followed by sintering and air quenching. The present research work focuses on the possibility of single-phase formation in the aforementioned high entropy oxide despite the great difference in the atomic sizes of reactant alkaline earth and 3d transition metal oxides. Structural properties of (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide were explored by confirmation of its single-phase Fd-3m spinel structure by x-ray diffraction (XRD). Further, nanocrystalline nature and morphology were analyzed by scanning electron microscopy (SEM). Among thermal properties, thermogravimetric analysis (TGA) revealed that the (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide is thermally stable up to a temperature of 1200℃. Whereas phase evolution in (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide before and after sintering was analyzed through differential scanning calorimetry (DSC). Electrochemical studies of (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide consists of a comparison of thermodynamic and kinetic parameters of water and hydrazine hydrate oxidation. Values of activation energy for water oxidation (9.31 kJ mol-1) and hydrazine hydrate oxidation (13.93 kJ mol-1) reveal that (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide is catalytically more active towards water oxidation as compared to that of hydrazine hydrate oxidation. Electrochemical impedance spectroscopy is also performed to get insight into the kinetics of both types of reactions.

Keywords

References

  1. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Adv. Eng. Mater., 2004, 6(5), 299-303. https://doi.org/10.1002/adem.200300567
  2. J.-W. Yeh, JOM., 2013, 65(12), 1759-1771. https://doi.org/10.1007/s11837-013-0761-6
  3. R. Z. Zhang, M. J. Reece, J. Mater. Chem. A., 2019, 7(39), 22148-22162. https://doi.org/10.1039/C9TA05698J
  4. B. Cantor, I. Chang, P. Knight, A. Vincent, Mat. Sci. Eng. A., 2004, 375-377, 213-218. https://doi.org/10.1016/j.msea.2003.10.257
  5. J.W. Yeh, S.J. Lin, J. Mater. Res., 2018, 33(19), 3129-3137. https://doi.org/10.1557/jmr.2018.283
  6. A. Hana, N. K. Janjua, T. Subhani, J. Ahmad, F. Ali, H. B. Awais, Mater. Res. Express 2019, 6(10), 106585. https://doi.org/10.1088/2053-1591/ab3bd6
  7. B. S. Murty, J.-W. Yeh, S. Ranganathan, High-entropy alloys, 2014, 13-35
  8. R. B. Nair, H. S. Arora, S. Mukherjee, S. Singh, H. Singh, H. S. Grewal, Ultrason. Sonochem., 2018, 41, 252-260. https://doi.org/10.1016/j.ultsonch.2017.09.044
  9. X. Feng, J. Zhang, Z. Xia, W. Fu, K. Wu, G. Liu, J. Sun, Mater. Lett., 2018, 210, 84-87. https://doi.org/10.1016/j.matlet.2017.08.129
  10. S. Guo, C. T. Liu, Prog. Nat. Sci.: Mater. Int, 2011, 21, 433-446. https://doi.org/10.1016/S1002-0071(12)60080-X
  11. D. B. Miracle, J. D. Miller, O. N. Senkov, C. Woodward, M. D. Uchic, J. Tiley, Entropy 2014, 16(19), 494-525. https://doi.org/10.3390/e16010494
  12. C. M. Rost, E. Sachet, T. Borman, A. Moballegh, E. C. Dickey, D. Hou, J. L. Jones, S. Curtarolo, J. P. Maria, Nat. Commun., 2015, 6(1), 1-8.
  13. S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio, J. Luo, Scr. Mater., 2018, 142, 116-120. https://doi.org/10.1016/j.scriptamat.2017.08.040
  14. A. Sarkar, R. Djenadic, D. Wang, C. Hein, R. Kautenburger, O. Clemens, H. Hahn, J. Eur. Ceram. Soc., 2018, 38(5), 2318-2327. https://doi.org/10.1016/j.jeurceramsoc.2017.12.058
  15. V. I. Sachkov, R. A. Nefedov, I. V. Amelichkin, IOP Conf. Ser: Mater. Sci. Eng., 2019, 597(1), 012005.
  16. R. Djenadic, A. Sarkar, O. Clemens, C. Loho, M. Botros, V. S. K. Chakravadhanula, C. Kubel, S. S. Bhattacharya, A. S. Gandhi, H. Hahn, Mater. Res. Lett., 2017, 5(2), 102-109. https://doi.org/10.1080/21663831.2016.1220433
  17. D. Berardan, S. Franger, D. Dragoe, A. K. Meena, N. Dragoe, Phys. Status Solidi RRL., 2016, 10(4), 328-333. https://doi.org/10.1002/pssr.201600043
  18. D. Berardan, S. Franger, A. K. Meena, N. Dragoe, J. Mater. Chem. A., 2016, 4(24), 9536-9541. https://doi.org/10.1039/C6TA03249D
  19. A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. de Biasi, C. Kubel, T. Brezesinski, S. S. Bhattacharya, H. Hahn, B. Breitung., Nat.Commun., 2018, 9(1), 1-9. https://doi.org/10.1038/s41467-017-02088-w
  20. A. Mujtaba, N. K. Janjua, J. Electroanal. Chem., 2016, 763, 125-133. https://doi.org/10.1016/j.jelechem.2015.12.050
  21. J. Dabrowa, M. Stygar, A. Mikula, A. Knapik, K. Mroczka, W. Tejchman, M. Danielewski, M. Martin, Mater. Lett., 2018, 216, 32-36. https://doi.org/10.1016/j.matlet.2017.12.148
  22. J.S. Shie, R.H. Fann, Ferroelectrics., 1981, 37(1), 697-700. https://doi.org/10.1080/00150198108223525
  23. S. Cao, F. (F.) Tao, Y. Tang, Y. Li, J. Yu, Chem. Soc. Rev., 2016, 45(17), 4747-4765. https://doi.org/10.1039/c6cs00094k
  24. D. F. Abbott, D. Lebedev, K. Waltar, M. Povia, M. Nachtegaal, E. Fabbri, C. Coperet, T. J. Schmidt, Chem. Mater., 2016, 28(18), 6591-6604. https://doi.org/10.1021/acs.chemmater.6b02625
  25. G. Anand, A. P. Wynn, C. M. Handley, C. L. Freeman, Acta Mater., 2018, 146, 119-125. https://doi.org/10.1016/j.actamat.2017.12.037
  26. S. A. Robbins, R. G. Rupard, B. J. Weddle, T. R. Maull, P. K. Gallagher, Thermochim. Acta., 1995, 269, 43-49. https://doi.org/10.1016/0040-6031(95)02602-9
  27. I. Arvanitidis, D. Sichen, S. Seetharaman, H. Y. Sohn, Metall. Mater. Trans. B., 1997, 28(6), 1063-1068. https://doi.org/10.1007/s11663-997-0060-0
  28. R. Kripal, A. K. Gupta, R. K. Srivastava, S. K. Mishra, Spectrochim. Acta, Part A., 2011, 79(5), 1605-1612. https://doi.org/10.1016/j.saa.2011.05.019
  29. R. K. Datta, R. Roy, Nature., 1961, 191(4784), 169-170. https://doi.org/10.1038/191169a0
  30. D. Zu, H. Wang, S. Lin, G. Ou, H. Wei, S. Sun, H. Wu, Nano Res., 2019, 1-14.
  31. L. Liu, Z. Mei, A. Tang, A. Azarov, A. Kuznetsov, Q. K. Xue, X. Du, Phys. Rev. B 2016, 93, 235-305.
  32. W. J. Liu, X. D. Tang, Z. Tang, W. Bai, N. Y. Tang, Adv. Condens. Matter Phys. 2013, 2013.
  33. R. K. Singh, R. Devivaraprasad, T. Kar, A. Chakraborty, M. Neergat, J. Electrochem. Soc. 2015, 162(6), F489. https://doi.org/10.1149/2.0141506jes
  34. S. Dhillon, R. Kant, J. Chem. Sci. 2017, 129(8), 1277-1292. https://doi.org/10.1007/s12039-017-1335-x
  35. A. S. A. Khan, R Ahmed, M. L. Mirza, Port. Electrochim. Acta 2009, 27(4), 429-441. https://doi.org/10.4152/pea.200904429
  36. B. Wang, X. Cao, Electroanalysis 1992, 4(7), 719-724. https://doi.org/10.1002/elan.1140040709
  37. D. Banerjea, I. P. Sing, Z. Anorg. Chem. 1967, 349(3-4), 213-219. https://doi.org/10.1002/zaac.19673490314
  38. H. Gaunt, E. A. M. Wetton, J. appl. Chem. 1966, 16(6), 171-176. https://doi.org/10.1002/jctb.5010160602
  39. E. Chrzescijanska, E. Wudarska, E. Kusmierek, J. Rynkowski, J. Electroanal. Chem. 2014, 713, 17-21. https://doi.org/10.1016/j.jelechem.2013.11.015
  40. M. Sarno, E. Ponticorvo, Electrochem. Commun. 2019, 107, 106510. https://doi.org/10.1016/j.elecom.2019.106510
  41. L. Qiu, H. Zhang, W. Wang, Y. Chen, R. wang, Appl. Surf. Sci. 2014, 319, 339-343. https://doi.org/10.1016/j.apsusc.2014.07.133
  42. G. Chen, C. C. Waraksa, H. Cho, D. D. Macdonald, T. E. Mallouk, J. Electrochem. Soc. 2003, 150(9), 423-428.
  43. Y. Zuo, R. Pang, W. Li, J. P. Xiong, Y.M. Tang, Corros. Sci. 2008, 50(12), 3322-3328. https://doi.org/10.1016/j.corsci.2008.08.049
  44. R. L. Doyle, M. E. G. Lyons, Phys. Chem. Chem. Phys. 2013, 15(14), 5224-5237. https://doi.org/10.1039/c3cp43464h
  45. M. E. G. Lyons, M. P. Brandon, Int. J. Electrochem. Sci. 2008, 3, 1368-1424
  46. P. P. Wu, F. J. Xu, K. K. Deng, F. Y. Han, Z. Z. Zhang, R. Gao, Corros. Sci. 2017, 127, 280-290. https://doi.org/10.1016/j.corsci.2017.08.014
  47. C. S. Hsu, Nian. T. Suen, Y. Y. Hsu, H. Y. Lin, C. W. Tung, Y. F. Liao, T. S. Chan, H. S. Sheu, S. Y. Chen and H. M. Chen, Phys. Chem. Chem. Phys. 2017, 19(13), 8681-8693. https://doi.org/10.1039/C6CP07630K
  48. M. E. G. Lyons, M. P. Brandon, J. Electroanal. Chem. 2009, 631(1-2), 62-70. https://doi.org/10.1016/j.jelechem.2009.03.019
  49. R. Nimal, S. Aftab, U. A. Rana, A. Lashin, S. U. -D. Khan, S. Ali, H. B. Kraatz, A. Shah, J. Electrochem. Soc. 2016, 163(10), H871. https://doi.org/10.1149/2.0181610jes
  50. R. Zahn, G. Coullerez, J. Voros, T. Zambelli, J. Mater. Chem. 2012, 22(22), 11073-11078. https://doi.org/10.1039/c2jm30469d

Cited by

  1. High‐Entropy Energy Materials in the Age of Big Data: A Critical Guide to Next‐Generation Synthesis and Applications vol.11, pp.47, 2021, https://doi.org/10.1002/aenm.202102355