DOI QR코드

DOI QR Code

Electrochemical Properties of Cathode according to the Type of Sulfide Electrolyte and the Application of Surface Coating

  • Yoon, Da Hye (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Park, Yong Joon (Department of Advanced Materials Engineering, Kyonggi University)
  • Received : 2020.08.18
  • Accepted : 2020.09.14
  • Published : 2021.02.28

Abstract

The electrochemical performance of all-solid-state cells (ASSCs) based on sulfide electrolytes is critically affected by the undesirable interfacial reactions between oxide cathodes and sulfide electrolytes because of the high reactivity of sulfide electrolytes. Based on the concept that the interfacial reactions are highly dependent on the type of sulfide electrolyte, the electrochemical properties of the ASSCs prepared using three types of sulfide electrolytes were observed and compared. The Li2MoO4-LiI coating layer was also introduced to suppress the interfacial reactions. The cells using argyrodite electrolyte exhibited a higher capacity and Coulombic efficiency than the cells using 75Li2S-22P2S5-3Li2SO4 and Li7P3S11 electrolytes, indicating that the argyrodite electrolyte is less reactive with cathodes than other electrolytes. Moreover, the introduction of Li2MoO4-LiI coating on the cathode surface significantly enhanced the electrochemical performance of ASSCs because of the protection of coating layer. Pulverization of argyrodite electrolyte is also effective in increasing the capacity of cells because the smaller size of electrolyte particles improved the contact stability between the cathode and the sulfide electrolyte. The cyclic performance of cells was also enhanced by pulverized electrolyte, which is also associated with improved contact stability at the cathode/electrolyte. These results show that the introduction of Li2MoO4-LiI coating and the use of pulverized sulfide electrolyte can exhibit a synergic effect of suppressed interfacial reaction by the coating layer and improved contact stability owing to the small particle size of electrolyte.

Keywords

References

  1. T.M. Nguyen, J. Suk, Y. Kang, J Electrochem Sci Te., 2019, 10(2), 250-255. https://doi.org/10.5229/jecst.2019.10.2.250
  2. S.Y. Lee, Y.J. Park, Sci Rep., 2019, 9(1), 1-10. https://doi.org/10.1038/s41598-018-37186-2
  3. T.W. Kim, W.S. Choi, H.C. Shin, J.Y. Choi, J.M. Kim, M.S. Park, W.S Yoon, J Electrochem Sci Te., 2020, 11(1), 14-25. https://doi.org/10.33961/jecst.2019.00619
  4. S.Y. Lee, Y.J. Park, ACS OMEGA., 2020, 5(7), 3579-3587. https://doi.org/10.1021/acsomega.9b03932
  5. H.V. Ramasamy, S. Sinha, J. Park, M. Gong, V. Aravindan, J. Heo, Y.S. Lee, J Electrochem Sci Te., 2019, 10(2), 196-205. https://doi.org/10.5229/jecst.2019.10.2.196
  6. H. Lee, S.B. Lim, J.Y. Kim, M. Jeong, Y.J. Park, W.S. Yoon, ACS Appl. Mater. Interfaces., 2018, 10(13), 10804-10818. https://doi.org/10.1021/acsami.7b12722
  7. M.K. Kim, J. Kim, S.H. Yu, J. Mun, and Y.E. Sung, J Electrochem Sci Te., 2019, 10(2), 223-230 https://doi.org/10.5229/jecst.2019.10.2.223
  8. K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Sci Adv., 2018, 4(6), 9820.
  9. K.H. Park, Q. Bai, D.H. Kim, D.Y. Oh, Y. Zhu, Y. Mo, Y.S. Jung, Adv Energy Mater., 2018, 8(18), 1800035. https://doi.org/10.1002/aenm.201800035
  10. M. Tatsumisago, M. Nagao, A. Hayashi, J Asian Ceram Soc., 2013, 1(1), 17-25. https://doi.org/10.1016/j.jascer.2013.03.005
  11. L. Xu, S. Tang, Y. Cheng, K. Wang, J. Liang, C. Liu, Y.C. Cao, F. Wei, L. Mai, Joule, 2018, 2(10), 1991-2015. https://doi.org/10.1016/j.joule.2018.07.009
  12. C. Sun, J. Liu, Y. Gong, D.P. Wilkinson, J. Zhang, Nano Energy., 2017, 33, 363-386. https://doi.org/10.1016/j.nanoen.2017.01.028
  13. W. Zhang, D.A. Weber, H. Weigand, T. Arlt, I. Manke, D. Schroder, R. Koerver, T. Leichtweiss, P. Hartmann, W.G. Zeier, J. Janek, ACS Appl. Mater. Interfaces., 2017, 9(21), 17835-17845. https://doi.org/10.1021/acsami.7b01137
  14. F. Zheng, M. Kotobuki, S. Song, M.O. Lai, L. Lu, Power Sources, 2018, 389, 198-123. https://doi.org/10.1016/j.jpowsour.2018.04.022
  15. H.W. Kwak, Y.J. Park, Sci Rep., 2019, 9(1), 1-9. https://doi.org/10.1038/s41598-018-37186-2
  16. Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, Nat Energy., 2016, 1(4), 1-7.
  17. H.W. Kwak, Y.J. Park, Thin Solid Films., 2018, 660, 625-630. https://doi.org/10.1016/j.tsf.2018.04.038
  18. F. Walther, R. Koerver, T. Fuchs, S. Ohno, J. Sann, M. Rohnke, W.G. Zeier, J. Rgen Janek, Chem. Mater, 2019, 31(10), 3745-3755. https://doi.org/10.1021/acs.chemmater.9b00770
  19. Y. Xiao, L.J. Miara, Y. Wang, G. Ceder, Joule, 2019, 3(5), 1252-1275. https://doi.org/10.1016/j.joule.2019.02.006
  20. T. Swamy, X. Chen, Y.M. Chiang, Chem Mater., 2019, 31(3), 707-713. https://doi.org/10.1021/acs.chemmater.8b03420
  21. S.K. Jung, H. Gwon, S.S. Lee, H. Kim, J.C. Lee, J.G. Chung, S.Y. Park, Y. Aihara, J Mater Chem A., 2019, 7(40), 22967-22976. https://doi.org/10.1039/C9TA08517C
  22. Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang, W. Luo, Y. Huang, Adv Mater., 2018, 30(17), 1870122. https://doi.org/10.1002/adma.201870122
  23. S.A. Pervez, M.A. Cambaz, V. Thangadurai, M. Fichtner, ACS Appl. Mater. Interfaces., 2019, 11(25), 22029-22050. https://doi.org/10.1021/acsami.9b02675
  24. T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Nature Mater., 2019, 18(12), 1278-1291. https://doi.org/10.1038/s41563-019-0431-3
  25. V. Thangadurai, S. Narayanan, D. Pinzaru, Chem. Soc. Rev, 2014, 43(13), 4714-4727 https://doi.org/10.1039/c4cs00020j
  26. S. Noh, J. Kim, M. Eom, D. Shin, Ceram Int., 2013, 39(7), 8453-8458. https://doi.org/10.1016/j.ceramint.2013.04.027
  27. N. Ohta, K. Takada, I. Sakaguchi, L. Zhang, R. Ma, K. Fukuda, M. Osada, T. Sasaki, Electrochem Commun., 2007, 9(7), 1486-1490. https://doi.org/10.1016/j.elecom.2007.02.008
  28. C. Park, S. Lee, K. Kim, M. Kim, S. Choi, D. Shin, J Electrochem Soc, 2019, 166(3), A5318. https://doi.org/10.1149/2.0481903jes
  29. R. Koerver, I. Aygun, T. Leichtwib, C. Dietrich, W. Zhang, J.O. Binder, P. Hartmann, W.G. Zeier, J. Janek, Chem. Mater., 2017, 29(13), 5574-5582. https://doi.org/10.1021/acs.chemmater.7b00931
  30. H.S. Lui, Z.R. Zhang, Z.L. Gong, Y. Yang, Electrochem. Solid-state lett., 2004, 7(7), A190. https://doi.org/10.1149/1.1738471
  31. K. Matsumoto, R. Kuzuo, K. Takeya, A. Yamanaka, Power Sources, 1999, 81, 558-561.
  32. J. Zhang, Z. Li, R. Gao, Z. Hu, X. Liu, J. Phys. Chem. C, 2015, 119(35), 20350-20356. https://doi.org/10.1021/acs.jpcc.5b06858
  33. S. Choi, J. Ann, J. Do, S. Lim, C. Park, D. Shin, J. Janek, J Electrochem. Soc., 2019, 166(3), A5193. https://doi.org/10.1149/2.0301903jes
  34. T. Shi, Q. Tu, Y. Tian, Y. Xiao, L. J. Miara, O. Kononova, G. Ceder, Adv Energy Mater., 2020, 10(1), 2070004. https://doi.org/10.1002/aenm.202070004

Cited by

  1. Comparison of LiTaO3 and LiNbO3 Surface Layers Prepared by Post- and Precursor-Based Coating Methods for Ni-Rich Cathodes of All-Solid-State Batteries vol.13, pp.32, 2021, https://doi.org/10.1021/acsami.1c10294