DOI QR코드

DOI QR Code

Effect of Iron Species in Mesoporous Fe-N/C Catalysts with Different Shapes on Activity Towards Oxygen Reduction Reaction

  • Kang, Taehong (Graduate Program of Energy Technology, School of Integrated Technology, Institute of Integrated Technology, Gwangju Institute of Science and Technology) ;
  • Lee, Jiyeon (Graduate Program of Energy Technology, School of Integrated Technology, Institute of Integrated Technology, Gwangju Institute of Science and Technology) ;
  • Kim, Jong Gyeong (Graduate Program of Energy Technology, School of Integrated Technology, Institute of Integrated Technology, Gwangju Institute of Science and Technology) ;
  • Pak, Chanho (Graduate Program of Energy Technology, School of Integrated Technology, Institute of Integrated Technology, Gwangju Institute of Science and Technology)
  • Received : 2020.03.30
  • Accepted : 2020.09.17
  • Published : 2021.02.28

Abstract

Among the non-precious metal catalysts, iron-nitrogen doped carbon (Fe-N/C) catalysts have been recognized as the most promising candidates for an alternative to Pt-based catalysts for the oxygen reduction reaction (ORR) under alkaline and acidic conditions. In this study, the nano replication method using mesoporous silica, which features tunable primary particle sizes and shape, is employed to prepare the mesoporous Fe-N/C catalysts with different shapes. Platelet SBA-15, irregular KIT-6, and spherical silica particle (SSP) were selected as a template to generate three different kinds of shapes of the mesoporous Fe-N/C catalyst. Physicochemical properties of mesoporous Fe-N/C catalysts are characterized by using small-angle X-ray diffraction, nitrogen adsorption-desorption isotherms, and scanning electron microscopy images. According to the electrochemical evaluation, there is no morphological preference of mesoporous Fe-N/C catalysts toward the ORR activity with half-cell configuration under alkaline electrolyte. By implementing X-ray photoelectron spectroscopy analysis of Fe and N atoms in the mesoporous Fe-N/C catalysts, it is possible to verify that the activity towards ORR highly depends on the portions of "Fe-N" species in the catalysts regardless of the shape of catalysts. It was suggested that active site distribution in the Fe-N/C is one important factor towards ORR activity.

Keywords

References

  1. (a) C. H. Cui, L. Gan, M. Heggen, S. Rudi and P. Strasser, Nature Mater., 2013, 12(8), 765-771. https://doi.org/10.1038/nmat3668
  2. (b) L. Sui, W. An, C. K. Rhee, S. H. Hur, J. Electrochem. Sci. Technol., 2020, 11(1), 84-91. https://doi.org/10.33961/jecst.2019.00556
  3. C. W. B. Bezerra, L. Zhang, K. Lee, H. Liu, A. L. Marques, E. P. Marques, H. Wang and J. Zhang, Electrochim. Acta, 2008, 53(15), 4937-4951. https://doi.org/10.1016/j.electacta.2008.02.012
  4. S. Gottesfeld, D. R. Dekel, M. Page, C. Bae, Y. S. Yan, P. Zelenay and Y. S. Kim, J. Power Sources, 2018, 375, 170-184. https://doi.org/10.1016/j.jpowsour.2017.08.010
  5. Y. J. Sa, J. H. Kim, S. H. Joo, J. Electrochem. Sci. Technol., 2017, 8(3), 169-182. https://doi.org/10.5229/JECST.2017.8.3.169
  6. X. Li, B. N. Popov, T. Kawahara and H. Yanagi, J. Power Sources, 2011, 196(4), 1717-1722. https://doi.org/10.1016/j.jpowsour.2010.10.018
  7. D. R. Dekel, J Power Sources, 2018, 375, 158-169. https://doi.org/10.1016/j.jpowsour.2017.07.117
  8. S. Maurya, C. H. Fujimoto, M. R. Hibbs, C. N. Villarrubia and Y. S. Kim, Chem. Mater., 2018, 30(7), 2188-2192. https://doi.org/10.1021/acs.chemmater.8b00358
  9. K. S. Park, S.-A. Jin, K. H. Lee, J. Lee, I. Song, B. S. Lee, S. Kim, J. Sohn, C. Pak, G. Kim, S. G. Doo and K. Kwon, Int. J. Electrochem Sci., 2016, 11(11), 9295-9306. https://doi.org/10.20964/2016.11.27
  10. P. H. Matter, L. Zhang and U. S. Ozkan, J. Catal., 2006, 239(1), 83-96. https://doi.org/10.1016/j.jcat.2006.01.022
  11. H. Zhang, S. Hwang, M. Wang, Z. Feng, S. Karakalos, L. Luo, Z. Qiao, X. Xie, C. Wang, D. Su, Y. Shao and G. Wu, J. Am. Chem. Soc., 2017, 139(40), 14143-14149. https://doi.org/10.1021/jacs.7b06514
  12. E. Rossinyol, J. Arbiol, F. Peiro, A. Cornet, J. R. Morante, B. Tian, T. Bo and D. Zhao, Sensors and Actuators B: Chem., 2005, 109(1), 57-63. https://doi.org/10.1016/j.snb.2005.03.016
  13. E. Luo, M. Xiao, Y. Wang, J. Ge, C. Liu and W. Xing, ChemCatChem, 2018, 10(17), 3653-3658. https://doi.org/10.1002/cctc.201800771
  14. L. Fan, P. Sun, L. Yang, Z. Xu and J. Han, Korean J. Chem. Eng., 2020, 37(1), 166-175. https://doi.org/10.1007/s11814-019-0414-8
  15. H. Burri, R. Anjurn, R. B. Gurram, H. Mitta, S. Mutyala and M. Jonnalagadda, Korean J. Chem. Eng., 2019, 36(9), 1482-1488. https://doi.org/10.1007/s11814-019-0346-3
  16. S. Wang, L. Lyu, G. Sima, Y. Cui, B. Li, X. Zhang and L. Gan, Korean J. Chem. Eng., 2019, 36(7), 1042-1050. https://doi.org/10.1007/s11814-019-0281-3
  17. S. Ghosh, W. D. Yong, E. M. Jin, S. R. Polaki, S. M. Jung and H. Jun, Korean J. Chem. Eng., 2019, 36(2), 312-320. https://doi.org/10.1007/s11814-018-0199-1
  18. S.-Y. Chen, C.-Y. Tang, W.-T. Chuang, J.-J. Lee, Y.-L. Tsai, J. C. C. Chan, C.-Y. Lin, Y.-C. Liu and S. Cheng, Chem. Mater., 2008, 20(12), 3906-3916. https://doi.org/10.1021/cm703500c
  19. X. Jin, C. H. Lee, J. H. Kim, D. J. You, C. Pak, J. K. Shonand J. M. Kim, Bull. Korean Chem. Soc., 2015, 36(8), 2062-2067. https://doi.org/10.1002/bkcs.10399
  20. S. H. Joo, H. I. Lee, D. J. You, K. Kwon, J. H. Kim, Y. S. Choi, M. Kang, J. M. Kim, C. Pak, H. Chang and D. Seung, Carbon, 2008, 46(15), 2034-2045. https://doi.org/10.1016/j.carbon.2008.08.015
  21. S. C. Ryu, J. H. Lee and H. Moon, Korean J. Chem. Eng., 2019, 36(9), 1410-1416. https://doi.org/10.1007/s11814-019-0329-4
  22. F. Kleitz, T. W. Kim and R. Ryoo, Bull. Korean Chem. Soc., 2005, 26(11), 1653-1668. https://doi.org/10.5012/bkcs.2005.26.11.1653
  23. J. K. Shon, H. S. Lee, G. O. Park, J. Yoon, E. Park, G. S. Park, S. S. Kong, M. Jin, J.-M. Choi, H. Chang, S. Doo, J. M. Kim, W.-S. Yoon, C. Pak, H. Kim and G. D. Stucky, Nature Commun., 2016, 7(1), 11049. https://doi.org/10.1038/ncomms11049
  24. W. Cai, Q. Chen, H. Xuan, C. Li, H. yu, L. Cui, Z. Yu, S. Zhang and F. Qu, Korean J. Chem. Eng., 2019, 36(4), 513-521. https://doi.org/10.1007/s11814-019-0236-8
  25. Y. He, H. Xu, S. Ma, P. Zhang, W. Huang and M. Kong, Mater. Lett., 2014, 131, 361-365. https://doi.org/10.1016/j.matlet.2014.06.026
  26. X.-D. Wang, Z.-X. Shen, T. Sang, X.-B. Cheng, M.-F. Li, L.-Y. Chen and Z.-S.Wang, J. Colloid Interface Sci., 2010, 341(1), 23-29. https://doi.org/10.1016/j.jcis.2009.09.018
  27. J. Woo, Y. J. Sa, J. H. Kim, H. W. Lee, C. Pak and S. H. Joo, ChemElectroChem, 2018, 5(14), 1928-1936. https://doi.org/10.1002/celc.201800183
  28. U. Byambasuren, Y. Jeon, D. Altansukh, Y. Ji and Y.-G. Shul, Korean J. Chem. Eng., 2016, 33(6), 1831-1836. https://doi.org/10.1007/s11814-016-0030-9
  29. M. Kruk, M. Jaroniec, S. H. Joo and R. Ryoo, J. Phys. Chem. B, 2003, 107(10), 2205-2213. https://doi.org/10.1021/jp0271514
  30. H. I. Lee, J. H. Kim, G. D. Stucky, Y. Shi, C. Pak and J. M. Kim, J. Mater. Chem., 2010, 20(39), 8483-8487. https://doi.org/10.1039/c0jm00820f
  31. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and S. D. Stucky, Science, 1998, 279(5350), 548-552. https://doi.org/10.1126/science.279.5350.548
  32. J. M. Esparza, M. L. Ojeda, A. Campero, A. Dominguez, I. Kornhauser, F. Rojas, A. M. Vidales, R. H. Lopez and G. Zgrablich, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 241(1-3), 35-45. https://doi.org/10.1016/j.colsurfa.2004.04.010
  33. R. Atchudan, J. Joo and A. Pandurangan, Mater. Res. Bull., 2013, 48(6), 2205-2212. https://doi.org/10.1016/j.materresbull.2013.02.048
  34. H. I. Lee, G. D. Stucky, J. H. Kim, C. Pak, H. Chang and J. M. Kim, Adv. Mater., 2011, 23(20), 2357-2361. https://doi.org/10.1002/adma.201003599
  35. W. Guo, F. Kleitz, K. Cho and R. Ryoo, J. Mater. Chem., 2010, 20(38), 8257-8265. https://doi.org/10.1039/c0jm01518k
  36. C. Jo, K. Kim and R. Ryoo, Micropo. Mesopo. Mater., 2009, 124(1-3), 45-51. https://doi.org/10.1016/j.micromeso.2009.04.037
  37. D. H. Choi and R. Ryoo, J. Mater. Chem., 2010, 20(26), 5544-5550. https://doi.org/10.1039/c0jm00671h
  38. H. Chang, S. H. Joo and C. Pak, J. Mater. Chem., 2007, 17(30), 3078-3088. https://doi.org/10.1039/b700389g
  39. S. H. Joo, C. Pak, D. J. You, S. A. Lee, H. I. Lee, J. M. Kim, H. Chang and D. Seung, Electrochim. Acta, 2006, 52(4), 1618-1626. https://doi.org/10.1016/j.electacta.2006.03.092
  40. C. Pak, S. J. Lee, S. A. Lee and H. Chang, Korean J. Chem. Eng., 2005, 22(2), 214-218. https://doi.org/10.1007/BF02701487
  41. H. I. Lee, J. H. Kim, D. J. You, J. E. Lee, J. M. Kim, W.-S. Ahn, C. Pak, S. H. Joo, H. Chang and D. Seung, Adv. Mater., 2008, 20(4), 757-762. https://doi.org/10.1002/adma.200702209
  42. N. Daems, T. Breugelmans, I. F. J. Vankelecom and P. P. Pescarmona, ChemElectroChem, 2018, 5(1), 119-128. https://doi.org/10.1002/celc.201700907
  43. J. Y. Cheon, C. Ahn, D. J. You, C. Pak, S. H. Hur, J. Kim and S. H. Joo, J. Mater. Chem. A, 2013, 1(4), 1270-1283. https://doi.org/10.1039/C2TA00076H
  44. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol and K. S. W. Sing, Pure Appl. Chem., 2015, 87(9-10), 1051-1069. https://doi.org/10.1515/pac-2014-1117
  45. U. Byambasuren, Y. Jeon, D. Altansukh, Y. Ji and Y.-G. Shul, Carbon Lett., 2016, 17(1), 53-64. https://doi.org/10.5714/CL.2016.17.1.053
  46. N. Du, C. Wang, R. Long and Y. Xiong, Nano Res. 2017, 10(9), 3228−3237. https://doi.org/10.1007/s12274-017-1611-6
  47. Y. Feng, Q. Shao, Y. Ji, X. Cui, Y. Li, X. Zhu, X. Huang, Sci. Adv. 2018, 4(7), eaap8817.
  48. A. Zadick, L. Dubau, N. Sergent, G. Berthome, and M. Chatenet, ACS. Catal. 2015, 5(8), 4819-4824. https://doi.org/10.1021/acscatal.5b01037
  49. M. Li, F. Xu, H. Li and Y. Wang, Catal. Sci. Tech., 2016, 6(11), 3670-3693. https://doi.org/10.1039/C6CY00544F
  50. C. H. Choi, W. S. Choi, O. Kasian, A. K. Mechler, M. T. Sougrati, S. Bruller, K. Strickland, Q. Jia, S. Mukerjee, K. J. J. Mayrhofer and F. Jaouen, Angew. Chem. Int. Ed., 2017, 56(30), 8809-8812. https://doi.org/10.1002/anie.201704356
  51. L.-B. Lv, S.-Z. Yang, W.-Y. Ke, H.-H. Wang, B. Zhang, P. Zhang, X.-H. Li, M. F. Chisholm and J.-S. Chen, ChemCatChem, 2018, 10(16), 3539-3545. https://doi.org/10.1002/cctc.201800707
  52. K. Mamtani, D. Jain, A. C. Co and U. S. Ozkan, Energy Fuels, 2017, 31(6), 6541-6547. https://doi.org/10.1021/acs.energyfuels.7b00242
  53. Y. Qiao, P. Yuan, Y. Hu, J. Zhang, S. Mu, J. Zhou, H. Li, H. Xia, J. He and Q. Xu, Adv. Mater., 2018, 30(46), 1804504. https://doi.org/10.1002/adma.201804504
  54. M. M. Hossen, K. Artyushkova, P. Atanassov and A. Serov, J. Power Sources, 2018, 375, 214-221. https://doi.org/10.1016/j.jpowsour.2017.08.036
  55. S. Ganesan, N. Leonard and S. C. Barton, Phys. Chem. Chem. Phys., 2014, 16(10), 4576-4585. https://doi.org/10.1039/c3cp54751e