DOI QR코드

DOI QR Code

Inhibitory Effect of Chitosan and Phosphate Cross-linked Chitosan against Cucumber Mosaic Virus and Pepper Mild Mottle Virus

  • Gangireddygari, Venkata Subba Reddy (Virology Unit, Horticulture and Herbal Crop Environment Division, National Institute of Horticulture and Herbal Science, Rural Development Administration) ;
  • Chung, Bong Nam (Virology Unit, Horticulture and Herbal Crop Environment Division, National Institute of Horticulture and Herbal Science, Rural Development Administration) ;
  • Cho, In-Sook (Virology Unit, Horticulture and Herbal Crop Environment Division, National Institute of Horticulture and Herbal Science, Rural Development Administration) ;
  • Yoon, Ju-Yeon (Virology Unit, Horticulture and Herbal Crop Environment Division, National Institute of Horticulture and Herbal Science, Rural Development Administration)
  • Received : 2021.10.27
  • Accepted : 2021.11.15
  • Published : 2021.12.01

Abstract

Cucumber mosaic virus (CMV) and Pepper mild mottle virus (PMMoV) causes severe economic loss in crop productivity of both agriculture and horticulture crops in Korea. The previous surveys showed that naturally available biopolymer material - chitosan (CS), which is from shrimp cells, reduced CMV accumulation on pepper. To improve the antiviral activity of CS, it was synthesized to form phosphate cross-linked chitosan (PCS) and compared with the original CS. Initially, the activity of CS and PCS (0.01%, 0.05%, and 0.1% concentration) compound against PMMoV infection and replication was tested using a half-leaf assay on Nicotiana glutinosa leaves. The total number of local lesions represented on a leaf of N. glutinosa were counted and analyzed with phosphate buffer treated leaves as a negative control. The leaves treated with a 0.1% concentration of CS or PCS compounds exhibited an inhibition effect by 40-75% compared with the control leaves. The same treatment significantly reduced about 40% CMV accumulation measured by double antibody sandwich enzyme-linked immunosorbent assay and increased the relative expression levels of the NPR1, PR-1, cysteine protease inhibitor gene, LOX, PAL, SRC2, CRF3 and ERF4 genes analyzed by quantitative reverse transcriptase-polymerase chain reaction, in chili pepper plants.

Keywords

Acknowledgement

This work was supported by a grant from the Basic Research Program (PJ01431803) of the National Institute of Horticultural and Herbal Science, Rural Development Administration, Republic of Korea. The authors are thankful to Dr. M.N. Prabhakar, Dept. of Mechanical Engineering, Changwon National University, Changwon, South Korea, for providing the CS and PCS materials.

References

  1. Adams, M. J., Antoniw, J. F. and Kreuze, J. 2009. Virgaviridae: a new family of rod-shaped plant viruses. Arch. Virol. 154:1967-1972. https://doi.org/10.1007/s00705-009-0506-6
  2. Ali, A., Zahid, N., Manickam, S., Siddiqui, Y., Alderson, P. G. and Maqbool, M. 2014. Induction of lignin and pathogenesis-related proteins in dragon fruit plants in response to submicron chitosan dispersions. Crop Prot. 63:83-88. https://doi.org/10.1016/j.cropro.2014.05.009
  3. Anonymous. 2006. ICTVdb Management. 00.071.0.01.007. Pepper mild mottle virus. In: ICTVdb - The Universal Virus Database, version 4, ed. by C. Buchen-Osmond. Columbia University, New York, USA.
  4. Chirkov, S. N., Il'ina, A. V., Surgucheva, N. A., Letunova, E. V., Varitsev, Y. A., Tatarinova, N. Y. and Varlamov, V. P. 2001. Effect of chitosan on systemic viral infection and some defense responses on potato plants. Russ. J. Plant Physiol. 48:774-779. https://doi.org/10.1023/A:1012508625017
  5. Cho, J. D., Kim, J. S., Lee, S. H., Choi, G. S. and Chung, B. N. 2007. Viruses and symptoms on peppers, and their infection types in Korea. Res. Plant Dis. 13:75-81. https://doi.org/10.5423/RPD.2007.13.2.075
  6. Choi, G. S., Kim, J. H., Lee, D. H., Kim, J. S. and Ryu, K. H. 2005. Occurrence and distribution of viruses infecting pepper in Korea. Plant Pathol. J. 21:258-261. https://doi.org/10.5423/PPJ.2005.21.3.258
  7. Choi, G.-S., Kwon, S.-J., Choi, S.-K., Cho, I.-S. and Yoon, J.-Y. 2015. Characteristics of cucumber mosaic virus-GTN and resistance evaluation of chilli pepper cultivars to two cucumber mosaic virus isolates. Res. Plant Dis. 21:99-102. https://doi.org/10.5423/RPD.2015.21.2.099
  8. Chun, S.-C. and Chandrasekaran, M. 2019. Chitosan and chitosan nanoparticles induced expression of pathogenesis-related proteins genes enhance biotic stress tolerance in tomato. Int. J. Biol. Macromol. 125:948-954. https://doi.org/10.1016/j.ijbiomac.2018.12.167
  9. Colson, P., Richet, H., Desnues, C., Balique, F., Moal, V., Grob, J.-J., Berbis, P., Lecoq, H., Harle, J.-R., Berland, Y. and Raoult, D. 2010. Pepper mild mottle virus, a plant virus associated with specific immune responses, fever, abdominal pains, and pruritus in humans. PLoS ONE 5:e10041. https://doi.org/10.1371/journal.pone.0010041
  10. Damalas, C. A. and Koutroubas, S. D. 2016. Farmers' exposure to pesticides: toxicity types and ways of prevention. Toxics 4:1. https://doi.org/10.3390/toxics4010001
  11. Doares, S. H., Syrovets, T., Weiler, E. W. and Ryan, C. A. 1995. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad. Sci. U. S. A. 92:4095-4098. https://doi.org/10.1073/pnas.92.10.4095
  12. Elsharkawy, M. M., Shimizu, M., Takahashi, H. and Hyakumachi, M. 2012. Induction of systemic resistance against cucumber mosaic virus by Penicillium simplicissimum GP17-2 in Arabidopsis and tobacco. Plant Pathol. 61:964-976. https://doi.org/10.1111/j.1365-3059.2011.02573.x
  13. Feliziani, E., Landi, L. and Romanazzi, G. 2015. Preharvest treatments with chitosan and other alternatives to conventional fungicides to control postharvest decay of strawberry. Carbohydr. Polym. 132:111-117. https://doi.org/10.1016/j.carbpol.2015.05.078
  14. Hassan, O. and Chang, T. 2017. Chitosan for eco-friendly control of plant disease. Asian J. Plant Pathol. 11:53-70. https://doi.org/10.3923/ajppaj.2017.53.70
  15. Iriti, M. and Varoni, E. M. 2015. Chitosan-induced antiviral activity and innate immunity in plants. Environ. Sci. Pollut. Res. 22:2935-2944. https://doi.org/10.1007/s11356-014-3571-7
  16. Jia, X., Meng, Q., Zeng, H., Wang, W. and Yin, H. 2016. Chitosan oligosaccharide induces resistance to tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signaling pathway. Sci. Rep. 6:26144. https://doi.org/10.1038/srep26144
  17. Kim, J.-S., Lee, S.-H., Choi, H.-S., Kim, M.-K., Kwak, H.-R., Kim, J.-S., Nam, M., Cho, J.-D., Cho, I.-S. and Choi, G.-S. 2012. 2007-2011 Characteristics of plant virus infections on crop samples submitted from agricultural places. Res. Plant Dis. 18:277-289. https://doi.org/10.5423/RPD.2012.18.4.277
  18. Kumaraswamy, R. V., Kumari, S., Choudhary, R. C., Pal, A., Raliya, R., Biswas, P. and Saharan, V. 2018. Engineered chitosan based nanomaterials: bioactivities, mechanisms and perspectives in plant protection and growth. Int. J. Biol. Macromol. 113: 494-506. https://doi.org/10.1016/j.ijbiomac.2018.02.130
  19. Kwon, S.-J., Cho, I.-S., Yoon, J.-Y. and Chung, B.-N. 2018. Incidence and occurrence pattern of viruses on peppers growing in fields in Korea. Res. Plant Dis. 24:66-74. https://doi.org/10.5423/RPD.2018.24.1.66
  20. Lee, J. H., Hong, J. S., Ju, H. J. and Park, D. H. 2015. Occurrence of viral disease in the field- cultivated pepper in Korea from 2006 to 2010. Korean J. Org. Agric. 23:123-131. https://doi.org/10.11625/KJOA.2015.23.1.123
  21. Lee, S. W., Heinz, R., Robb, J. and Nazar, R. N. 1994. Differential utilization of alternative initiation sites in a plant defense gene responding to environmental stimuli. Eur. J. Biochem. 226:109-114. https://doi.org/10.1111/j.1432-1033.1994.0t109.x
  22. Liu, D., Jiao, S., Cheng, G., Li, X., Pei, Z., Pei, Y., Yin, H. and Du, Y. 2018. Identification of chitosan oligosaccharides binding proteins from the plasma membrane of wheat leaf cell. Int. J. Biol. Macromol. 111:1083-1090. https://doi.org/10.1016/j.ijbiomac.2018.01.113
  23. Liu, H., Du, Y., Wang, X. and Sun, L. 2004. Chitosan kills bacteria through cell membrane damage. Inter. J. Food Microbiol. 95:147-155. https://doi.org/10.1016/j.ijfoodmicro.2004.01.022
  24. Lustriane, C., Dwivany, F. M., Suendo, V. and Reza, M. 2018. Effect of chitosan and chitosan-nanoparticles on post-harvest quality of banana fruits. J. Plant Biotechnol. 45:36-44. https://doi.org/10.5010/JPB.2018.45.1.036
  25. Malerba, M. and Cerana, R. 2016. Chitosan effects on plant systems. Int. J. Mol. Sci. 17:996. https://doi.org/10.3390/ijms17070996
  26. Mejia-Teniente, L., de Dalia Duran-Flores, F., Chapa-Oliver, A. M., Torres-Pacheco, I., Cruz-Hernandez, A., Gonzalez-Chavira, M. M., Ocampo-Velaaquez, R. V. and Guevara Gonzalez, R. G. 2013. Oxidative and molecular responses in Capsicum annuum L. after hydrogen peroxide, salicylic acid and chitosan foliar applications. Int. J. Mol. Sci. 14:10178-10196. https://doi.org/10.3390/ijms140510178
  27. Mou, Z., Fan, W. and Dong, X. 2003. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935-944. https://doi.org/10.1016/S0092-8674(03)00429-X
  28. Nagorskaya, V., Reunov, A., Lapshina, L., Davydova, V. and Yermak, I. 2014. Effect of chitosan on tobacco mosaic virus (TMV) accumulation, hydrolase activity, and morphological abnormalities of the viral particles in leaves of N. tabacum L. Samsun. Virol. Sin. 29:250-256. https://doi.org/10.1007/s12250-014-3452-8
  29. Nie, P., Li, X., Wang, S., Guo, J., Zhao, H. and Niu, D. 2017. Induced systemic resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-dependent signaling pathway and activates PAMP-triggered immunity in Arabidopsis. Front. Plant Sci. 8:238.
  30. Niu, D., Wang, X., Wang, Y., Song, X., Wang, J., Guo, J. and Zhao, H. 2016. Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a NPR1- and SA-dependent signaling pathway. Biochem. Biophys. Res. Commun. 469:120-125. https://doi.org/10.1016/j.bbrc.2015.11.081
  31. Pandey, V. P., Awasthi, M., Singh, S., Tiwari, S. and Dwivedi, U. N. 2017. A comprehensive review on function and application of plant peroxidases. Biochem. Anal. Biochem. 6:308.
  32. Palukaitis, P. and Garcia-Arenal, F. 2003. Cucumoviruses. Adv. Virus Res. 62:241-323. https://doi.org/10.1016/S0065-3527(03)62005-1
  33. Petutschnig, E. K., Jones, A. M. E., Serazetdinova, L., Lipka, U. and Lipka, V. 2010. The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J. Biol. Chem. 285:28902-28911. https://doi.org/10.1074/jbc.M110.116657
  34. Povero, G., Loreti, E., Pucciariello, C., Santaniello, A., Di Tommaso, D., Di Tommaso, G., Kapetis, D., Zolezzi, F., Piaggesi, A. and Perata, P. 2011. Transcript profiling of chitosan-treated Arabidopsis seedlings. J. Plant Res. 124:619-629. https://doi.org/10.1007/s10265-010-0399-1
  35. Pratiwi, A., Dwivany, F. M., Larasati, D., Islamia, H. C. and Martien, R. 2015. Effect of chitosan coating and bamboo FSC (fruit storage chamber) to expand banana shelf life. AIP Conf. Proc. 1677:100005. https://doi.org/10.1063/1.4930763
  36. Qin, F., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2011. Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol. 52:1569-1582. https://doi.org/10.1093/pcp/pcr106
  37. Rendina, N., Nuzzaci, M., Scopa, A., Cyuypers, A. and Sofo, A. 2019. Chitosan-elicited defense response in cucumber mosaic virus (CMV)-infected tomato plants. J. Plant Physiol. 234-235:9-17. https://doi.org/10.1016/j.jplph.2019.01.003
  38. Rohini, N. and Lakshmanan, V. 2017. Evaluation studies of hot pepper hybrids (Capsicum annum L.) for yield and quality characters. Electron. J. Plant Breed. 8:643-651. https://doi.org/10.5958/0975-928x.2017.00098.9
  39. Shahrajabian, M. H., Chaski, C., Polyzos, N., Tzortzakis, N. and Petropoulos, S. A. 2021. Sustainable agriculture systems in vegetable production using chitin chitosan as plant biostimulants. Biomolecules 11:819. https://doi.org/10.3390/biom11060819
  40. Sharif, R., Mujtaba, M., Ur Rahman, M., Shalmani, A., Ahmad, H., Anwar, T., Tianchan, D. and Wang, X. 2018. The multifunctional role of chitosan in horticultural crops: a review. Molecules 23:872. https://doi.org/10.3390/molecules23040872
  41. Sivakumar, D., Bill, M., Korsten, L. and Thompson, K. 2016. Integrated application of chitosan coating with different postharvest treatments in the control of postharvest decay and maintenance of overall fruit quality. In: Chitosan in the preservation of agricultural commodities, eds. by S. BautistaBanos, G. Romanazzi and A. Jimenez-Aparicio, pp. 127-153. Academic Press, Cambridge, MA, USA.
  42. Spoel, S. H., Koornneef, A., Claessens, S. M. C., Korzelius, J. P., Van Pelt, J. A., Mueller, M. J., Buchala, A. J., Metraux, J.-P., Brown, R., Kazan, K., Van Loon, L. C., Dong, X. and Pieterse, C. M. J. 2003. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760-770. https://doi.org/10.1105/tpc.009159
  43. Statistics Korea. 2020. Production of chili pepper, sesame and highland potatoes in 2020. URL http://kostat.go.kr [1 September 2021].
  44. Sudhakar, N., Nagendra-Prasad, D., Mohan, N. and Murugesan, K. 2007. Induction of systemic resistance in Lycopersicon esculentum cv. PKM1 (tomato) against cucumber mosaic virus by using ozone. J. Virol. Methods 139:71-77. https://doi.org/10.1016/j.jviromet.2006.09.013
  45. Vitti, A., Pellegrini, E., Nali, C., Lovelli, S., Sofo, A., Valerio, M., Scopa, A. and Nuzzaci, M. 2016. Trichoderma harzianum T-22 induces systemic resistance in tomato infected by cucumber mosaic virus. Front. Plant Sci. 7:1520.
  46. Voss-Fels, K. and Snowdon, R. J. 2016. Understanding and utilizing crop genome diversity via high-resolution genotyping. Plant Biotechnol. J. 14:1086-1094. https://doi.org/10.1111/pbi.12456
  47. Wetter, C., Conti, M., Altschuh, D., Tabillion, R. and van Regenmortel, M. H. V. 1984. Pepper mild mottle virus, a Tobamovirus infecting pepper cultivars in Sicily. Phytopathology 74:405-410. https://doi.org/10.1094/Phyto-74-405
  48. Wu, Y., Zhang, D., Chu, J. Y., Boyle, P., Wang, Y., Brindle, I. D., De Luca, V. and Despres, C. 2012. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep. 1:639-647. https://doi.org/10.1016/j.celrep.2012.05.008
  49. Xing, K., Zhu, X., Peng, X. and Qin, S. 2015. Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agron. Sustain. Dev. 35:569-588. https://doi.org/10.1007/s13593-014-0252-3
  50. Yin, H. and Du, Y. 2010. Mechanism and application of chitin/ chitosan and their derivatives in plant protection. In: Chitin, chitosan, oligosaccharides and their derivatives, ed. by S.-K. Kim, pp. 605-617. CRC Press, Boca Raton, FL, USA.
  51. Yoon, J.-Y., Gangireddygari, V. S. R., Cho, I.-S., Chung, B.-N., Yoon, B.-D. and Choi, S.-K. 2021. Effects of b-glucans from Aureobasidium pullulans on cucumber mosaic virus infection in chili pepper. Res. Plant Dis. 27:17-23. https://doi.org/10.5423/RPD.2021.27.1.17
  52. Yoon, J. Y., Paluakaitis, P. and Choi, S. K. 2019. Host range. In: Cucumber mosaic virus, eds. by P. Palukaitis and F. Garcia-Arenal, pp. 15-18. American Phytopathological Society, St. Paul, MN, USA.
  53. Zhang, D., Wang, H., Hu, Y. and Liu, Y. 2015. Chitosan controls postharvest decay on cherry tomato fruit possibly via the mitogen-activated protein kinase signaling pathway. J. Agric. Food Chem. 63:7399-7404. https://doi.org/10.1021/acs.jafc.5b01566