DOI QR코드

DOI QR Code

The Water-Soluble Chitosan Derivative, N-Methylene Phosphonic Chitosan, Is an Effective Fungicide against the Phytopathogen Fusarium eumartii

  • Mesas, Florencia Anabel (Instituto de Investigaciones Biologicas, UE CONICET-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata) ;
  • Terrile, Maria Cecilia (Instituto de Investigaciones Biologicas, UE CONICET-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata) ;
  • Silveyra, Maria Ximena (Instituto de Investigaciones Biologicas, UE CONICET-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata) ;
  • Zuniga, Adriana (INQUISUR, Departamento de Quimica, Universidad Nacional del Sur-CONICET) ;
  • Rodriguez, Maria Susana (INQUISUR, Departamento de Quimica, Universidad Nacional del Sur-CONICET) ;
  • Casalongue, Claudia Anahi (Instituto de Investigaciones Biologicas, UE CONICET-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata) ;
  • Mendieta, Julieta Renee (Instituto de Investigaciones Biologicas, UE CONICET-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata)
  • 투고 : 2021.06.06
  • 심사 : 2021.09.18
  • 발행 : 2021.12.01

초록

Chitosan has been considered an environmental-friendly polymer. However, its use in agriculture has not been extended yet due to its relatively low solubility in water. N-Methylene phosphonic chitosan (NMPC) is a water-soluble derivative prepared by adding a phosphonic group to chitosan. This study demonstrates that NMPC has a fungicidal effect on the phytopathogenic fungus Fusarium solani f. sp. eumartii (F. eumartii) judged by the inhibition of F. eumartti mycelial growth and spore germination. NMPC affected fungal membrane permeability, reactive oxygen species production, and cell death. Also, this chitosan-derivative exerted antifungal effects against two other phytopathogens, Botrytis cinerea, and Phytophthora infestans. NMPC did not affect tomato cell viability at the same doses applied to these phytopathogens to exert fungicide action. In addition to water solubility, the selective biological cytotoxicity of NMPC adds value in its application as an antimicrobial agent in agriculture.

키워드

과제정보

This research was supported by the Agencia Nacional de Promocion Cientifica y Tecnologica (PICT RAICES 0959), Universidad Nacional de Mar del Plata (EXA 928/19), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) and Comision de Investigaciones Cientificas (CIC, 1480/18). FAM is a PhD fellow from CONICET. CAC, MCT and MXS are members of the research staff from CONICET. JRM is researcher from CIC. We thank Dr. Candela Lobato and Dr. Ana Laxalt for providing us fungal strains and tomato cells, respectively. We also thank Dr. Diego Fiol and Dr. Ruben D. Conde for his critical reading of our manuscript. This study was funded by Agencia Nacional de Promocion Cientifica y Tecnologica (PICT RAICES 0959), Universidad Nacional de Mar del Plata (EXA 928/19), CONICET and Comision de Investigaciones Cientificas de la Provincia de Buenos Aires (CIC, 1480/18).

참고문헌

  1. Andreu, A. B., Caldiz, D. O. and Forbes, G. A. 2010. Phenotypic expression of resistance to Phytophthora infestans in processing potatoes in Argentina. Am. J. Potato Res. 87:177-187. https://doi.org/10.1007/s12230-009-9121-z
  2. Arguelles-Monal, W. M., Lizardi-Mendoza, J., Fernandez-Quiroz, D., Recillas-Mota, M. T. and Montiel-Herrera, M. 2018. Chitosan derivatives: introducing new functionalities with a controlled molecular architecture for innovative materials. Polymers 10:342. https://doi.org/10.3390/polym10030342
  3. Asgari-Targhi, G., Iranbakhsh, A. and Ardebili, Z. O. 2018. Potential benefits and phytotoxicity of bulk and nano-chitosan on the growth, morphogenesis, physiology, and micropropagation of Capsicum annuum. Plant Physiol. Biochem. 127:393-402. https://doi.org/10.1016/j.plaphy.2018.04.013
  4. Badawy, M. E. I. 2010. Structure and antimicrobial activity relationship of quaternary N-alkyl chitosan derivatives against some plant pathogens. J. Appl. Polym. Sci. 117:960-969. https://doi.org/10.1002/app.31492
  5. Bautista-Banos, S., Hernandez-Lauzardo, A. N., Velazquez-del Valle, M. G., Hernandez-Lopez, M., Ait Barka, E., Bosquez-Molina, E. and Wilson, C. L. 2006. Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Prot. 25:108-118. https://doi.org/10.1016/j.cropro.2005.03.010
  6. Behboudi, F., Tahmasebi Sarvestani, Z., Kassaee, M. Z., Modares Sanavi, S. A. M. and Sorooshzadeh, A. 2017. Phytotoxicity of chitosan and SiO2 nanoparticles to seed germination of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) plants. Not. Sci. Biol. 9:242-249. https://doi.org/10.15835/nsb9210075
  7. Benito, E. P., ten Have, A., van't Klooster, J. W. and van Kan, J. A. L. 1998. Fungal and plant gene expression during synchronized infection of tomato leaves by Botrytis cinerea. Eur. J. Plant Pathol. 104:207-220. https://doi.org/10.1023/A:1008698116106
  8. Carpenter, C. W. 1915. Some potato tuber-rots caused by species of Fusarium. J. Agric. Res. 5:183-210.
  9. Chakraborty, M., Hasanuzzaman, M., Rahman, M., Khan, M. A. R., Bhowmik, P., Mahmud, N. U., Tanveer, M. and Islam, T. 2020. Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agriculture 10:624. https://doi.org/10.3390/agriculture10120624
  10. Cuero, R. G., Osuji, G. and Washington, A. 1991. N-carboxymethylchitosan inhibition of aflatoxin production: role of zinc. Biotechnol. Lett. 13:441-444. https://doi.org/10.1007/BF01030998
  11. de Oliveira Pedro, R., Takaki, M., Gorayeb, T. C. C., Del Bianchi, V. L., Thomeo, J. C., Tiera, M. J. and de Oliveira Tiera, V. A. 2013. Synthesis, characterization and antifungal activity of quaternary derivatives of chitosan on Aspergillus flavus. Microbiol. Res. 168:50-55. https://doi.org/10.1016/j.micres.2012.06.006
  12. Duan, C., Meng, X., Meng, J., Khan, M. I. H., Dai, l., Khan, A., An, X., Zhang, J., Huq, T. and Ni, Y. 2019. Chitosan as a preservative for fruits and vegetables: a review on chemistry and antimicrobial properties. J. Bioresour. Bioprod. 4:11-21. https://doi.org/10.21967/jbb.v4i1.189
  13. El-Sayed, S. M. and Mahdy, M. E. 2015. Effect of chitosan on root-knot nematode, Meloidogyne javanica on tomato plants. Int. J. ChemTech Res. 7:1985-1992.
  14. Eweis, M., Elkholy, S. S. and Elsabee, M. Z. 2006. Antifungal efficacy of chitosan and its thiourea derivatives upon the growth of some sugar-beet pathogens. Int. J. Biol. Macromol. 38:1-8. https://doi.org/10.1016/j.ijbiomac.2005.12.009
  15. Fan, Z., Qin, Y., Liu, S., Xing, R., Yu, H. and Li, P. 2020. Chitosan oligosaccharide fluorinated derivative control rootknot nematode (Meloidogyne incognita) disease based on the multi-effcacy strategy. Mar. Drugs 18:273. https://doi.org/10.3390/md18050273
  16. Feofilova, E. P., Sergeeva, Y. E., Mysyakina, I. S. and Bokareva, D. A. 2015. Lipid composition in cell walls and in mycelial and spore cells of mycelial fungi. Mikrobiologiia 84:204-211 (in Russian).
  17. Food and Agriculture Organization of the United Nations. 2017. The future of food and agriculture: trends and challenges. URL http://www.fao.org/3/i6583e/i6583e.pdf [1 October 2021].
  18. Gupta, P. K. 2018. Toxicity of fungicides. In: Veterinary toxicology: basic and clinical principles, 3rd ed., ed. by R. C. Gupta, pp. 569-580. Academic Press, London, UK.
  19. Heras, A., Rodriguez, N. M, Ramos, V. M. and Agullo, E. 2001. N-methylene phosphonic chitosan: a novel soluble derivative. Carbohydr. Polym. 44:1-8. https://doi.org/10.1016/S0144-8617(00)00195-8
  20. Hou, Y.-P., Qu, X.-P., Mao, X.-W., Kuang, J., Duan, Y.-B., Song, X.-S., Wang, J.-X., Chen, C.-J. and Zhou, M.-G. 2018. Resistance mechanism of Fusarium fujikuroi to phenamacril in the field. Pest Manag. Sci. 74:607-616. https://doi.org/10.1002/ps.4742
  21. Howlett, N. G. and Avery, S. V. 1997. Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl. Environ. Microbiol. 63:2971-2976. https://doi.org/10.1128/aem.63.8.2971-2976.1997
  22. Ippolito, S. D., Mendieta, J. R., Terrile, M. C., Tonon, C. V., Mansilla, A. Y., Colman, S., Albertengo, L., Rodriguez, M. S. and Casalongue, C. A. 2017. Chitosan as source for pesticide formulations. In: Biological activities and application of marine polysaccharides, ed. by E. Shalaby, pp. 3-15. IntechOpen, London, UK.
  23. Kalaiarasan, P., Lakshmanan, P., Rajendran, G. and Samiyappan, R. 2006. Chitin and chitinolytic biocontrol agents for the management of root knot nematode, Meloidogyne arenaria in groundnut (Arachis hypogaea L.) cv. Co3. Indian J. Nematol. 36:181-186.
  24. Kim, H.-S., Kim, J.-E., Frailey, D., Nohe, A., Duncan, R., Czymmek, K. J. and Kang, S. 2015. Roles of three Fusarium oxysporum calcium ion (Ca(2+)) channels in generating Ca(2+) signatures and controlling growth. Fungal Genet. Biol. 82:145-157. https://doi.org/10.1016/j.fgb.2015.07.003
  25. Kim, H.-S., Kim, J.-E., Son, H., Frailey, D., Cirino, R., Lee, Y.-W., Duncan, R., Czymmek, K. J. and Kang, S. 2018. Roles of three Fusarium graminearum membrane Ca2+ channels in the formation of Ca2+ signatures, growth, development, pathogenicity and mycotoxin production. Fungal Genet. Biol. 111:30-46 https://doi.org/10.1016/j.fgb.2017.11.005
  26. Laluk, K. and Mengiste, T. 2010. Necrotroph attacks on plants: wanton destruction or covert extortion? Arabidopsis Book 8:e0136. https://doi.org/10.1199/tab.0136
  27. Laxalt, A. M., Raho, N., Have, A. T. and Lamattina, L. 2007. Nitric oxide is critical for inducing phosphatidic acid accumulation in xylanase-elicited tomato cells. J. Biol. Chem. 282:21160-21168. https://doi.org/10.1074/jbc.M701212200
  28. Liu, W., Qin, Y., Liu, S., Xing, R., Yu, H., Chen, X., Li, K. and Li, P. 2018. Synthesis, characterization and antifungal efficacy of chitosan derivatives with triple quaternary ammonium groups. Int. J. Biol. Macromol. 114:942-949. https://doi.org/10.1016/j.ijbiomac.2018.03.179
  29. Lopez-Moya, F., Martin-Urdiroz, M., Oses-Ruiz, M., Were, V. M., Fricker, M. D., Littlejohn, G., Lopez-Llorca, L. V. and Talbot, N. J. 2021. Chitosan inhibits septin-mediated plant infection by the rice blast fungus Magnaporthe oryzae in a protein kinase C and Nox1 NADPH oxidase-dependent manner. New Phytol. 230:1578-1593. https://doi.org/10.1111/nph.17268
  30. Malerba, M. and Cerana, R. 2018. Recent advances of chitosan applications in plants. Polymers 10:118. https://doi.org/10.3390/polym10020118
  31. Maluin, F. N. and Hussein, M. Z. 2020. Chitosan-based agro-nanochemicals as a sustainable alternative in crop protection. Molecules 25:1611. https://doi.org/10.3390/molecules25071611
  32. Mendieta, J. R., Pagano, M. R., Munoz, F. F., Daleo, G. R. and Guevara, M. G. 2006. Antimicrobial activity of potato aspartic proteases (StAPs) involves membrane permeabilization. Microbiology 152:2039-2047. https://doi.org/10.1099/mic.0.28816-0
  33. Novo, D. J., Perlmutter, N. G., Hunt, R. H. and Shapiro, H. M. 2000. Multiparameter flow cytometric analysis of antibiotic effects on membrane potential, membrane permeability, and bacterial counts of Staphylococcus aureus and Micrococcus luteus. Antimicrob. Agents Chemother. 44:827-834. https://doi.org/10.1128/AAC.44.4.827-834.2000
  34. Plascencia-Jatomea, M., Viniegra, G., Olayo, R., Castillo-Ortega, M. M. and Shirai, K. 2003. Effect of chitosan and temperature on spore germination of Aspergillus niger. Macromol. Biosci. 3:582-586. https://doi.org/10.1002/mabi.200350024
  35. Prins, T. W., Tudzynski, P., von Tiedemann, A., Tudzynski, B., Ten Have, A., Hansen, M. E., Tenberge, K. and van Kan, J. A. L. 2000. Infection strategies of Botrytis cinerea and related necrotrophic pathogens. In: Fungal pathology, ed. by J. W. Kronstad, pp. 33-64. Springer, Dordrecht, Netherlands.
  36. Qin, Y., Xing, R., Liu, S., Yu, H., Li, K., Hu, L. and Li, P. 2014. Synthesis and antifungal properties of (4-tolyloxy)-pyrimidyl-α-aminophosphonates chitosan derivatives. Int. J. Biol. Macromol. 63:83-91. https://doi.org/10.1016/j.ijbiomac.2013.10.023
  37. Qiu, J., Xu, J. and Shi, J. 2014. Molecular characterization of the Fusarium graminearum species complex in Eastern China. Eur. J. Plant Pathol. 139:811-823. https://doi.org/10.1007/s10658-014-0435-4
  38. Rabea, E. I., Badawy, M. E.-T, Stevens C. V., Smagghe G. and Steurbaut, W. 2003. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457-1465. https://doi.org/10.1021/bm034130m
  39. Radtke, W. and Escande, A. 1973. Pathogenicity of cepas from the Fusarium collection on Solanum tuberosum cultivars. Rev. Fac. Agron. 49:62-70.
  40. Rambo, G. W. and Bean, G. A. 1969. Fatty acids of the mycelia and conidia of Fusarium oxysporum and Fusarium roseum. Can. J. Microbiol. 15:967-968. https://doi.org/10.1139/m69-171
  41. Ramos, V. M., Rodriguez, N. M., Diaz, M. F., Rodriguez, M. S., Heras, A. and Agullo, E. 2003. N-methylene phosphonic chitosan. Effect of preparation methods on its properties. Carbohydr. Polym. 52:39-46. https://doi.org/10.1016/S0144-8617(02)00264-3
  42. Rioux, D., Jacobi, V., Simard, M. and Hamelin, R. C. 2000. Structural changes of spores of tree fungal pathogens after treatment with the designed antimicrobial peptide D2A21. Can. J. Bot. 78:462-471. https://doi.org/10.1139/b00-007
  43. Sukenik, S. C., Karuppanan, K., Li, Q., Lebrilla, C. B., Nandi, S. and McDonald, K. A. 2018. Transient recombinant protein production in glycoengineered Nicotiana benthamiana cell suspension culture. Int. J. Mol. Sci. 19:1205. https://doi.org/10.3390/ijms19041205
  44. Terrile, M. C., Mansilla, A. Y., Albertengo, L., Rodriguez, M. S. and Casalongue, C. A. 2015. Nitric-oxide-mediated cell death is triggered by chitosan in Fusarium eumartii spores. Pest. Manag. Sci. 71:668-674. https://doi.org/10.1002/ps.3814
  45. Thordal-Christensen, H., Zhang, Z., Wei, Y. and Collinge, D. B. 1997. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 11:1187-1194. https://doi.org/10.1046/j.1365-313X.1997.11061187.x
  46. Tikhonov, V. E., Stepnova, E. A., Babak, V. G., Yamskov, I. A., Palma-Guerrero, J., Jansson, H.-B., Lopez-Llorca, L. V., Salinas, J., Gerasimenko, D. V., Avdienko, I. D. and Varlamov, V. P. 2006. Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl) succinoyl/-derivatives. Carbohydr. Polym. 64:66-72. https://doi.org/10.1016/j.carbpol.2005.10.021
  47. Verlee, A., Mincke, S. and Stevens, C. V. 2017. Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr. Polym. 164:268-283. https://doi.org/10.1016/j.carbpol.2017.02.001
  48. Wang, W., Xue, C. and Mao, X. 2020. Chitosan: structural modification, biological activity and application. Int. J. Biol. Macromol. 164:4532-4546. https://doi.org/10.1016/j.ijbiomac.2020.09.042
  49. Wei, L., Tan, W., Wang, G., Li, Q., Dong, F. and Guo, Z. 2019. The antioxidant and antifungal activity of chitosan derivatives bearing Schiff bases and quaternary ammonium salts. Carbohydr. Polym. 226:115256. https://doi.org/10.1016/j.carbpol.2019.115256
  50. Westerdahl, B. B., Carlson, H. L., Grant, J., Radewald, J. D., Welch, N., Anderson, C. A., Darso, J., Kirby, D. and Shibuya, F. 1992. Management of plant-parasitic nematodes with a chitin-urea soil amendment and other materials. J. Nematol. 24:669-680.
  51. Younes, I. and Rinaudo, M. 2015. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs 13:1133-1174. https://doi.org/10.3390/md13031133
  52. Zhang, J., Tan, W., Li, Q., Dong, F. and Guo, Z. 2020. Synthesis and characterization of N,N,N-trimethyl-O-(ureidopyridinium) acetyl chitosan derivatives with antioxidant and antifungal activities. Mar. Drugs 18:163. https://doi.org/10.3390/md18030163
  53. Zhou, M. G. and Wang, J. X. 2001. Study on sensitivity base-line of Fusarium graminearum to carbendazim and biological characters of MBC-resistant strains. Acta Phytopathol. Sin. 31:365-367 (in Chinese). https://doi.org/10.3321/j.issn:0412-0914.2001.04.014
  54. Zhu, D. W., Bo, J. G., Zhang, H. L., Liu, W. G., Leng, X. G., Song, C. X., Yin, Y. J., Song, L. P., Liu, L. X., Mei, L., Li, X. L., Zhang, Y. and Yao, K. D. 2007. Synthesis of N-methylene phosphonic chitosan (NMPCS) and its potential as gene carrier. Chin. Chem. Lett. 18:1407-1410. https://doi.org/10.1016/j.cclet.2007.09.006