DOI QR코드

DOI QR Code

Bacterial Community and Diversity from the Watermelon Cultivated Soils through Next Generation Sequencing Approach

  • Adhikari, Mahesh (Division of Biological Resource Sciences, Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Kim, Sang Woo (Division of Biological Resource Sciences, Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Kim, Hyun Seung (Division of Biological Resource Sciences, Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Kim, Ki Young (Division of Biological Resource Sciences, Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Park, Hyo Bin (Division of Biological Resource Sciences, Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Kim, Ki Jung (Division of Biological Resource Sciences, Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Lee, Youn Su (Division of Biological Resource Sciences, Interdisciplinary Program in Smart Agriculture, Kangwon National University)
  • 투고 : 2021.07.04
  • 심사 : 2021.09.17
  • 발행 : 2021.12.01

초록

Knowledge and better understanding of functions of the microbial community are pivotal for crop management. This study was conducted to study bacterial structures including Acidovorax species community structures and diversity from the watermelon cultivated soils in different regions of South Korea. In this study, soil samples were collected from watermelon cultivation areas from various places of South Korea and microbiome analysis was performed to analyze bacterial communities including Acidovorax species community. Next generation sequencing (NGS) was performed by extracting genomic DNA from 92 soil samples from 8 different provinces using a fast genomic DNA extraction kit. NGS data analysis results revealed that, total, 39,367 operational taxonomic unit (OTU), were obtained. NGS data results revealed that, most dominant phylum in all the soil samples was Proteobacteria (37.3%). In addition, most abundant genus was Acidobacterium (1.8%) in all the samples. In order to analyze species diversity among the collected soil samples, OTUs, community diversity, and Shannon index were measured. Shannon (9.297) and inverse Simpson (0.996) were found to have the highest diversity scores in the greenhouse soil sample of Gyeonggi-do province (GG4). Results from NGS sequencing suggest that, most of the soil samples consists of similar trend of bacterial community and diversity. Environmental factors play a key role in shaping the bacterial community and diversity. In order to address this statement, further correlation analysis between soil physical and chemical parameters with dominant bacterial community will be carried out to observe their interactions.

키워드

과제정보

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET) through Project No. 120088-05-1-SB010 funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA). This research has been worked partially with the support of a research grant of Kangwon National University in 2019 and 2020.

참고문헌

  1. Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., Sanders, N. J., Cornell, H. V., Comita, L. S., Davies, K. F., Harrison, S. P., Kraft, N. J. B., Stegen, J. C. and Swenson, N. G. 2011. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14:19-28. https://doi.org/10.1111/j.1461-0248.2010.01552.x
  2. Bahar, O., Goffer, T. and Burdman, S. 2009. Type IV Pili are required for virulence, twitching motility, and biofilm formation of Acidovorax avenae subsp. citrulli. Mol. Plant-Microbe Interact. 22:909-920. https://doi.org/10.1094/mpmi-22-8-0909
  3. Bates, S. T., Berg-Lyons, D., Caporaso, J. G., Walters, W. A., Knight, R. and Fierer, N. 2011. Examining the global distribution of dominant archaeal populations in soil. ISME J. 5:908-917. https://doi.org/10.1038/ismej.2010.171
  4. Bates, S. T., Clemente, J. C., Flores, G. E., Walters, W. A., Parfrey, L. W., Knight, R. and Fierer, N. 2013. Global biogeography of highly diverse protistan communities in soil. ISME J. 7:652-659. https://doi.org/10.1038/ismej.2012.147
  5. Baumann, K., Dignac, M.-F., Rumpel, C., Bardoux, G., Sarr, A., Steffens, M. and Maron, P. A. 2013. Soil microbial diversity affects soil organic matter decomposition in a silty grassland soil. Biogeochemistry 114:201-212. https://doi.org/10.1007/s10533-012-9800-6
  6. Bender, S. F., Wagg, C. and van der Heijden, M. G. A. 2016. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31:440-452. https://doi.org/10.1016/j.tree.2016.02.016
  7. Canfield, D. E. 2014. Oxygen: a four billion year history. Princeton University Press, Princeton, NJ, USA. 216 pp.
  8. Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Pena, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J. and Knight, R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335-336. https://doi.org/10.1038/nmeth.f.303
  9. Cassan, F. and Diaz-Zorita, M. 2016. Azospirillium sp. in current agriculture: from the laboratory to the field. Soil Biol. Biochem. 103:117-130. https://doi.org/10.1016/j.soilbio.2016.08.020
  10. Chomicki, G. and Renner, S. S. 2015. Watermelon origin solved with molecular phylogenetics including Linnaean material: another example of museomics. New Phytol. 205:526-532. https://doi.org/10.1111/nph.13163
  11. Compant, S., Mitter, B., Colli-Mull, J. G., Gangl, H. and Sessitsch, A. 2011. Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb. Ecol. 62:188-197. https://doi.org/10.1007/s00248-011-9883-y
  12. Fatima, F., Pathak, N. and Rastogi Verma, S. 2014. An improved method for soil DNA extraction to study the microbial assortment within rhizospheric region. Mol. Biol. Int. 2014:518960. https://doi.org/10.1155/2014/518960
  13. Fierer, N. and Jackson, R. B. 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U. S. A. 103:626-631. https://doi.org/10.1073/pnas.0507535103
  14. Guo, J. 2016. Rhizosphere metagenomics of three biofuel crops. Ph.D. thesis. Michigan State University, East Lansing, MI, USA. 108 pp.
  15. Hernandez-Raquet, G., Durand, E., Braun, F., Cravo-Laureau, C. and Godon, J.-J. 2013. Impact of microbial diversity depletion on xenobiotic degradation by sewage-activated sludge. Environ. Microbiol. Rep. 5:588-594. https://doi.org/10.1111/1758-2229.12053
  16. Hill, T. C. J., Walsh, K. A., Harris, J. A. and Moffett, B. F. 2003. Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol. 43:1-11. https://doi.org/10.1016/S0168-6496(02)00449-X
  17. Jangid, K., Williams, M. A., Franzluebbers, A. J., Sanderling, J. S., Reeves, J. H., Jenkins, M. B., Endale, D. M., Coleman, D. C. and Whitman, W. B. 2008. Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biol. Biochem. 40:2843-2853. https://doi.org/10.1016/j.soilbio.2008.07.030
  18. Jiang, J., Song, Z., Yang, X., Mao, Z., Nie, X., Guo, H. and Peng, X. 2017. Microbial community analysis of apple rhizosphere around Bohai Gulf. Sci. Rep. 7:88918.
  19. Kuang, S., Su, Y., Wang, H., Yu, W., Lang, Q. and Matangi, R. 2018. Soil microbial community structure and diversity around the aging oil sludge in Yellow River Delta as determined by high-throughput sequencing. Archae 2018:7861805. https://doi.org/10.1155/2018/7861805
  20. Lauber, C. L., Hamady, M., Knight, R. and Fierer, N. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75:5111-5120. https://doi.org/10.1128/AEM.00335-09
  21. Li, S., Peng, M., Liu, Z. and Shah, S. S. 2017. The role of soil microbes in promoting plant growth. Mol. Microbiol. Res. 7:30-37.
  22. Marchesi, J. R., Sato, T., Weightman, A. J., Martin, T. A., Fry, J. C., Hiom, S. J., Dymock, D. and Wade, W. G. 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 6:795-799.
  23. McPherson, M. R., Wang, P., Marsh, E. L., Mitchell, R. B. and Schachtman, D. P. 2018. Isolation and analysis of microbial communities in soil, rhizosphere, and roots in perennial grass experiments. J. Vis. Exp. 137:57932. https://doi.org/10.3791/57932
  24. Nielsen, U. N., Osler, G. H. R., Campbell, C. D., Burslem, D. F. R. P. and van der Wal, R. 2010. The influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale. J. Biogeogr. 37:1317-1328. https://doi.org/10.1111/j.1365-2699.2010.02281.x
  25. Philippot, L., Spor, A., Henault, C., Bru, D., Bizouard, F., Jones, C. M., Sarr, A. and Maron, P.-A. 2013. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7:1609-1619. https://doi.org/10.1038/ismej.2013.34
  26. Plassart, P., Prevost-Boure, N. C., Uroz, S., Dequiedt, S., Stone, D., Creamer, R., Griffiths, R. I., Bailey, M. J., Ranjard, L. and Lemanceau, P. 2019. Soil parameters, land use, and geographical distance drive soil bacterial communities along a European transect. Sci. Rep. 9:605. https://doi.org/10.1038/s41598-018-36867-2
  27. Rahimi-Midani, A., Lee, Y. S., Kang, S.-W., Kim, M.-K. and Choi, T.-J. 2018. First isolation and molecular characterization of bacteriophages infecting Acidovorax citrulli, the causal agent of bacterial fruit blotch. Plant Pathol. J. 34:59-64. https://doi.org/10.5423/PPJ.NT.08.2017.0190
  28. Ramirez, K. S., Knight, C. G., de Hollander, M., Brearley, F. Q., Constantinides, B., Cotton, A., Creer, S., Crowther, T. W., Davison, J., Delgado-Baquerizo, M., Dorrepaal, E., Elliott, D. R., Fox, G., Griffiths, R. I., Hale, C., Hartman, K., Houlden, A., Jones, D. L., Krab, E. J., Maestre, F. T., McGuire, K. L., Monteux, S., Orr, C. H., van der Putten, W. H., Roberts, I. S., Robinson, D. A., Rocca, J. D., Rowntree, J., Schlaeppi, K., Shepherd, M., Singh, B. K., Straathof, A. L., Bhatnagar, J. M., Thion, C., van der Heijden, M. G. A. and de Vries, F. T. 2018. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat. Microbiol. 3:189-196. https://doi.org/10.1038/s41564-017-0062-x
  29. Roesch, L. F. W., Fulthorpe, R. R., Riva, A., Casella, G., Hadwin, A. K. M., Kent, A. D., Daroub, S. H., Camargo, F. A. O., Farmerie, W. G. and Triplett, E. W. 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1:283-290. https://doi.org/10.1038/ismej.2007.53
  30. Roh, C., Villatte, F., Kim, B.-G. and Schmid, R. D. 2006. Comparative study of methods for extraction and purification of environmental DNA from soil and sludge samples. Appl. Biochem. Biotechnol. 134:97-112. https://doi.org/10.1385/ABAB:134:2:97
  31. Rosenblueth, M. and Martinez-Romero, E. 2006. Bacterial endophytes and their interactions with hosts. Mol. Plant-Microbe Interact. 19:827-837. https://doi.org/10.1094/MPMI-19-0827
  32. Sokal, R. R. and Michener, C. D. 1958. A statistical method for evaluating systematic relationships. Univ. Kansas. Sci. Bull. 38:1409-1438.
  33. Sommer, S. A., Van Woudenberg, L., Lenz, P. H., Cepeda, G. and Goetze, E. 2017. Vertical gradients in species richness and community composition across the twilight zone in the North Pacific Subtropical Gyre. Mol. Ecol. 21:6136-6156.
  34. Subba Rao, N. S. 1999. Soil microbiology. 4th ed. Science Publishers, Enfield, NH, USA. 407 pp.
  35. Tedersoo, L., Bahram, M., Polme, S., Koljalg, U., Yorou, N. S., Wijesundera, R., Villarreal Ruiz, L., Vasco-Palacios, A. M., Thu, P. Q., Suija, A., Smith, M. E., Sharp, C., Saluveer, E., Saitta, A., Rosas, M., Riit, T., Ratkowsky, D., Pritsch, K., Poldmaa, K., Piepenbring, M., Phosri, C., Peterson, M., Parts, K., Partel, K., Otsing, E., Nouhra, E., Njouonkou, A. L., Nilsson, R. H., Morgado, L. N., Mayor, J., May, T. W., Majuakim, L., Lodge, D. J., Lee, S. S., Larsson, K. H., Kohout, P., Hosaka, K., Hiiesalu, I., Henkel, T. W., Harend, H., Guo, L. D., Greslebin, A., Grelet, G., Geml, J., Gates, G., Dunstan, W., Dunk, C., Drenkhan, R., Dearnaley, J., De Kesel, A., Dang, T., Chen, X., Buegger, F., Brearley, F. Q., Bonito, G., Anslan, S., Abell, S. and Abarenkov, K. 2014. Fungal biogeography. Global diversity and geography of soil fungi. Science 346:1256688. https://doi.org/10.1126/science.1256688
  36. Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. and Dufresne, A. 2015. The importance of the microbiome of the plant holobiont. New Phytol. 206:1196-1206. https://doi.org/10.1111/nph.13312
  37. Wang, X., Van Nostrand, J. D., Deng, Y., Lu, X., Wang, C., Zhou, J. and Han, X. 2015. Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern China's grasslands. FEMS Microbiol. Ecol. 91: fiv133.
  38. Wei, Z., Gu, Y., Friman, V.-P., Kowalchuk, G. A., Xu, Y., Shen, Q. and Jousset, A. 2019. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5:eaaw0759. https://doi.org/10.1126/sciadv.aaw0759
  39. Wu, T., Ayres, E., Bardgett, R. D., Wall, D. H. and Garey, J. R. 2011. Molecular study of worldwide distribution and diversity of soil animals. Proc. Natl. Acad. Sci. U. S. A. 108:17720-17725. https://doi.org/10.1073/pnas.1103824108