DOI QR코드

DOI QR Code

Multiscale Finite Element Analysis of Needle-Punched C/SiC Composites through Subcell Modeling

서브셀 모델링을 통한 니들 펀치 C/SiC 복합재료의 멀티스케일 유한요소해석

  • Lim, Hyoung Jun (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Choi, Ho-Il (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Lee, Min-Jung (Agency for Defense Development) ;
  • Yun, Gun Jin (Department of Aerospace Engineering, Seoul National University)
  • 임형준 (서울대학교 기계항공공학부) ;
  • 최호일 (서울대학교 기계항공공학부) ;
  • 이민정 (국방과학연구소) ;
  • 윤군진 (서울대학교 항공우주공학과)
  • Received : 2020.12.14
  • Accepted : 2021.01.30
  • Published : 2021.02.28

Abstract

In this paper, a multi-scale finite element (FE) modeling methodology for three-dimensional (3D) needle-punched (NP) C/SiC with a complex microstructure is presented. The variations of the material properties induced by the needle-punching process and complex geometrical features could pose challenges when estimating the material behavior. For considering these features of composites, a 3D microscopic FE approach is introduced based on micro-CT technology to produce a 3D high fidelity FE model. The image processing techniques of micro-CT are utilized to generate discrete-gray images and reconstruct the high fidelity model. Furthermore, a subcell modeling technique is developed for the 3D NP C/SiC based on the high fidelity FE model to expand to the macro-scale structural problem. A numerical homogenization approach under periodic boundary conditions (PBCs) is employed to estimate the equivalent behavior of the high fidelity model and effective properties of subcell components, considering geometry continuity effects. For verification, proposed models compare excellently with experimental results for the mechanical behavior of tensile, shear, and bending under static loading conditions.

본 논문에서는 Needle-punched C/SiC 복합재료 해석을 위한 효율적인 멀티스케일 해석기법을 소개한다. 기존 Needle-punching으로 인해 복잡한 미소구조를 갖는 NP 복합재료는 기존의 제안된 복합재료 멀티스케일 기법으로 물성을 계산하는 것은 한계가 있어 왔다. 이를 극복하기 위해 micro-CT 이미지 촬영을 통해 NP 복합재료의 미소구조를 면밀히 파악할 수 있었고, 이미지 프로세싱을 바탕으로 실제구조와 직접적으로 대응할 수 있는 3D high fidelity 모델을 구축하였다. 또한 유한요소해석에 맞춰 요소크기를 조절할 수 있는 sub-region processing 소개를 바탕으로 효율적인 유한요소해석을 수행하였다. NP 복합재료의 미소구조 거동뿐만 아니라, macro-scale 구조해석의 적용을 위해 subcell 모델링을 제안하였다. Needle-punching에 의한 Z축 NP 섬유의 규칙적인 간격을 이용하여 모델링을 수행할 수 있었다. 제안한 두 종류의 모델은 균질화 기법을 이용하여 등가거동 및 등가물성을 파악하였으며, 추가적인 실험 결과와의 비교를 통해 검증을 수행하였다.

Keywords

References

  1. Canny, J. (1986) A Computational Approach to Edge Detection, IEEE Trans. Pattern Anal. & Mach. Intell., (6), pp.679-698.
  2. Doghri, I., Ouaar, A. (2003) Homogenization of Two-Phase Elasto-Plastic Composite Materials and Structures: Study of Tangent Operators, Cyclic Plasticity and Numerical Algorithms, Int. J. Solids & Struct., 40(7), pp.1681-1712. https://doi.org/10.1016/S0020-7683(03)00013-1
  3. Fish, J., Yu, Q. (2001) Multiscale Damage Modelling for Composite Materials: Theory and Computational Framework, Int. J.r Numer. Methods Eng., 52(1-2), pp.161-191. https://doi.org/10.1002/nme.276
  4. Hough, P.V. (1962) U.S. Patent No. 3,069,654. Washington, DC: U.S. Patent and Trademark Office.
  5. Jeong, S., Lim, H.J., Zhu, F.Y., Park, C., Kim, Y., Yun, G. (2018) Nano-Micro Multiscale Modeling for Graphene-Reinforced Nanocomposites, 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p.0902.
  6. Jeong, S., Zhu, F., Lim, H., Kim, Y., Yun, G.J. (2019) 3D Stochastic Computational Homogenization Model for Carbon Fiber Reinforced CNT/Epoxy Composites with Spatially Random Properties, Compos. Struct., 207, pp.858-870. https://doi.org/10.1016/j.compstruct.2018.09.025
  7. Lee, M., Kim, Y., Lee, Y. (2020) Finite Element Analysis Through Mechanical Property Test and Elasto-plastic Modeling of 2.5 DC f/SiC m Composite Analysis, J. Korean Soc. Aeronaut. & Space Sci., 48(9), pp.663-670. https://doi.org/10.5139/JKSAS.2020.48.9.663
  8. Li, L., Gao, X., Shi, J., Song, Y.D. (2013) Calculation of Needled C/SiC Composite Elastic Parameters in Consideration of the Porosity, J. Aerosp. Power, 28, pp.1257-1262.
  9. Lim, H., Choi, H., Lee, M.J., Yun, G.J. (2020a) Elasto-Plastic Damage Modeling and Characterization of 3D Needle-Punched Cf/SiCm Composite Materials, Ceram. Int., 46(10), pp.16918-16931. https://doi.org/10.1016/j.ceramint.2020.03.271
  10. Lim, H.J., Choi, H., Zhu, F.Y., Kerekes, T.W., Yun, G.J. (2020b) Multiscale Damage Plasticity Modeling and Inverse Characterization for Particulate Composites, Mech. Mater., 149, p.103564. https://doi.org/10.1016/j.mechmat.2020.103564
  11. Terada, K., Kikuchi, N. (1995) Nonlinear Homogenization Method for Practical Applications, American Society of Mechanical Engineers, Appl. Mech. Div., AMD, 212, pp.1-16.
  12. Wan, F., Liu, R., Wang, Y., Sun, G., Cao, Y., Zhang, C. (2019) Microstructure Characterization and Compressive Performance of 3D Needle-Punched C/C-SiC Composites Fabricated by Gaseous Silicon Infiltration, Ceram. Int., 45(6), pp.6897-6905. https://doi.org/10.1016/j.ceramint.2018.12.186
  13. Xie, J., Liang, J., Fang, G., Chen, Z. (2015) Effect of Needling Parameters on the Effective Properties of 3D Needled C/C-SiC Composites, Compos. Sci. & Technol., 117, pp.69-77. https://doi.org/10.1016/j.compscitech.2015.06.003
  14. Yu, J., Zhou, C., Zhang, H. (2017) A Micro-Image based Reconstructed Finite Element Model of Needle-Punched C/C Composite, Compos. Sci. & Technol., 153, pp.48-61. https://doi.org/10.1016/j.compscitech.2017.09.029
  15. Zhu, F.Y., Jeong, S., Lim, H.J., Yun, G.J. (2018) Probabilistic Multiscale Modeling of 3D Randomly Oriented and Aligned Wavy CNT Nanocomposites and RVE Size Determination, Compos. Struct, 195, pp.265-275. https://doi.org/10.1016/j.compstruct.2018.04.060