DOI QR코드

DOI QR Code

Biological activity, nutrients and caffeine analysis of fermented tea

발효차의 생리활성과 영양성분 및 카페인 분석

  • Kim, Taehee (Department of Forest Biomaterials Engineering, Kangwon National University) ;
  • Kwon, Yeeun (Department of Forest Biomaterials Engineering, Kangwon National University) ;
  • Park, Sunmin (Department of Forest Biomaterials Engineering, Kangwon National University) ;
  • Kim, Meong-Ju (Department of Intergrative Medical Sciences, Nambu University) ;
  • Ahn, Sunmi (Materials Science Research Institute, LABIO) ;
  • Hong, Eunkyung (Materials Science Research Institute, LABIO) ;
  • Ki, Hosam (Materials Science Research Institute, LABIO) ;
  • Choi, Sun-Eun (Department of Forest Biomaterials Engineering, Kangwon National University)
  • 김태희 (강원대학교 일반대학원 산림바이오소재공학과) ;
  • 권예은 (강원대학교 일반대학원 산림바이오소재공학과) ;
  • 박선민 (강원대학교 일반대학원 산림바이오소재공학과) ;
  • 김명주 (남부대학교 통합의료학과) ;
  • 안선미 ((주)라비오) ;
  • 홍은경 ((주)라비오) ;
  • 기호삼 ((주)라비오) ;
  • 최선은 (강원대학교 일반대학원 산림바이오소재공학과)
  • Received : 2021.01.19
  • Accepted : 2021.03.20
  • Published : 2021.03.28

Abstract

The reason why domestic fermented tea is less recognized than the world's top three black[Sri Lanka Uva black tea, India Darjeeling black tea, China Keemun(祁門) black tea] teas is that there is a very lack of scientific basis for clear quality standards and functionality. This researcher identified the major components of the world's top three black teas and fermented teas derived from domestic wild tea trees through analysis of various instruments such as HPLC, TOF-MS, and ELISA reader. In addition, in order to compare the physiological activity of the world's three major black teas and domestic fermented teas, the biological activity was compared and analyzed through DPPH·ABTS free radical scavenging activity and NO production inhibition. Furthermore, comparative analysis data on organic acid, free sugar, and tannic acid were obtained for quality comparison of palatable foods. When the above results are summarized, it is believed that it is possible to present the quality standards of Korean tea, and it is expected that the globalization of Korean tea will be possible.

최근 국내에서 발효차에 대한 수요도가 높아진 것에 비해 국내는 발효차 연구에 대한 역사가 짧고, 해외 유명 발효차들과의 과학적인 비교분석결과가 전무한 실정이다. 본 연구에서는세계 3대 홍차인 스리랑카 우바, 중국의 기문, 인도의 다즐링 홍차와 함께 전남 순천에서 생산되는 발효차를 항산화와 항염증 활성 검정 및 발효차의 주성분의 규명 및 함량 분석을 HPLC 및 TOF-MS 등의 분석을 통해서 실시 하였다. 항산화 활성 검정은 DPPH·ABTS 라디컬 소거능 2종의 실험을 실시하였고, 항염증 활성은 NO 생성 억제능을 통해서 실시 하였으며, 세계 3대 홍차와의 성분 분석을 위해서 총페놀 함량과 기호성 음식으로 분류되는 차의 특성상 사람이 느낄 수 있는 입맛에 관계된 성분들을 검토하기 위해서 탄닌산, 유리당, 유기산, 카페인 분석 등을 실시하였다. 이상의 결과를 종합하였을 때, 국내 자생하고 있는 야생 차나무로부터 생산된 발효차는 각각의 생리활성과 유효물질들의 함량을 과학적으로 검토한 결과, 세계 유명 3대 홍차와 비교하였을 때 우수한 생리활성과 유용한 성분들이 확인되었다.

Keywords

References

  1. K. H. Cho. (2017). Active Components and Physiological Activity of Black Tea Extracts.
  2. M. J. Kim. (2020). Tea and Curing through Analysis of Yin-Yang Theory. Journal of Industrial nvergence, 18(1), 97-107. https://doi.org/10.22678/JIC.2020.18.1.097
  3. B. Y. Rim. (2006). Comparison of Major Components and Bio-activities from Tea Products.
  4. K. Azuma, M. Nakayama, M. Koshika, K. Lppoushi, Y. Yamaguchi, K. Kohata, Y. Yamaguchi, H. Ito & H. Higashio. (1999). Phenolic antioxidants from the leaves of Corchorus olitorius L. J Agric Food Chem, 47, 3963-3966. https://doi.org/10.1021/jf990347p
  5. S. S. Ham, J. K. Hong & J. H. Lee. (1997). Antimutagenic effects of juices from edible Korean wild herbs. J Food Sci Nutr, 2, 155-161.
  6. T. P. Labuza. (1971). Kinetic of lipid oxidation in foods. CRC Crit Rev Food Technol, 2, 335-405.
  7. H. Asai, K. Ogawa, Y. Hara & K. Nakamura. (1987). Effect of alumina-tea catechin complex on the blood sugar in spontaneous diabetic mice. Clin. Report, 21, 163-166.
  8. Y. J. Cho, B. J. An & C. Choi. (1993). Inhibition effect of against angiotensin converting enzyme of flavan-3-ols isolated Korean green tea. Korean J. Food Sci. Technol, 25, 238-242.
  9. T. Matsuzaki & Y. Hara. (1985). Antioxidant activity of tea leaf catechins. Nippon Nogeikagaku Kaishi 59, 129-134. https://doi.org/10.1271/nogeikagaku1924.59.129
  10. Y. Hara, S. Maysuzaki & K. Nakamura. (1989). Antitumor activity of tea catechins. Nippon Eiyo Shokuryo Gakkaishi, 42, 39-45. https://doi.org/10.4327/jsnfs.42.39
  11. K. Fukai, T. Ishigami & Y. Hara. (1991). Antibacterial activity of tea polyphenols against phytopathogenic bacterial. Agric. Biol. Chem. 55, 1985-1897. https://doi.org/10.1271/bbb1961.55.1895
  12. J. Cao. (1995). External test and clinical observation and evaluation of the caries preventive effect of tea. Food Science and Industry, 28(4), 59-63.
  13. J. K. Kim, W. S. Cha, J. K. Park, S. Y. Oh, Y. J. Cho, S. S. Chun & C. Choi. (1997). Inhibition effect against tyrosinase of condensed tannins from Korean green tea. Korean J. Food Sci. Technol. 29, 173-174.
  14. I. S. Jung. (2010). A Comparative Study on Chemical Components and Physiological Active Function of Green Tea and Black Tea. Wonkwang University master degree thesis.
  15. T. Hatano, R. Edamatsu, M. Hiramatsu, A. Mori, Y. Fujita, T. Yasuhara, T. Yoshida & T. Okuda. (1989). Effects of the interaction of tannins with co-existing substances. VI. Effects of tannins and ralated polyphenols on superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radical. Chemical and Parmaceutical Bulletin, 37, 2016-2021. https://doi.org/10.1248/cpb.37.2016
  16. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yan & C. Rice-Evans. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26, 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  17. O. Folin & W. Denis. (1912). On phosphotungstic -phosphomolybdic compounds as color reagent. Journal of Biological Chemistry, 12, 239-243. https://doi.org/10.1016/S0021-9258(18)88697-5
  18. T. Mosmann. (1983). Rapid colorimetric assay for the cellular growth and survival. Journal of Immunological Methods, 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  19. M. Feelisch & J. Stamler. (1996). Methods in nitric oxide research. Chichester, United Kingdom : John Wiley & Sons, 492-497.
  20. S. Y. Park, S. S. Hong, X. H. Han, J. S. Ro & B. Y. Hwang. (2005). Inhibitory constituents of LPS-induced nitric oxide production from Arctium lappa. Natural Product Sciences, 11, 85-88.
  21. R. G. D. Steel & J. H. Torrie. (1980). Principle and procedures of statistics. 1st ed. Kogakusha, Tokyo, Japan : McGraw-Hill, 187-221.
  22. S. A. Kharitonov, D. Yates, R. A. Robbins, R. Logan-Sinclair, E. A. Shinebourne & P. J. Barnes. (1994). Increased nitric oxide in exhaled air of asthmatic patients, The Lancet, 343, 1 https://doi.org/10.1016/S0140-6736(94)90865-6