DOI QR코드

DOI QR Code

Dynamic Model of Water Electrolysis for Prediction of Dynamic Characteristics of Cooling System

냉각계통 동적 예측을 위한 수전해 시스템 동적 모사 모델

  • YUN, SANGHYUN (Department of Smart Automobile, Youngsan University) ;
  • YUN, JINYON (School of Mechanical and Automotive Engineering, Youngsan University) ;
  • HWANG, GUNYONG (School of Mechanical and Automotive Engineering, Youngsan University)
  • 윤상현 (영산대학교 스마트자동차학과) ;
  • 윤진원 (영산대학교 기계.자동차공학부) ;
  • 황건용 (영산대학교 기계.자동차공학부)
  • Received : 2020.12.26
  • Accepted : 2021.02.28
  • Published : 2021.02.28

Abstract

Water electrolysis technology, which generates hydrogen using renewable energy resources, has recently attracted great attention. Especially, the polymer electrolyte membrane water electrolysis system has several advantages over other water electrolysis technologies, such as high efficiency, low operating temperature, and optimal operating point. Since research that analyzes performance characteristics using test bench have high cost and long test time, however, model based approach is very important. Therefore, in this study, a system model for water electrolysis dynamics of a polymer electrolyte membrane was developed based on MATLAB/Simulink®. The water electrolysis system developed in this study can take into account the heat and mass transfer characteristics in the cell with the load variation. In particular, the performance of the system according to the stack temperature control can be analyzed and evaluated. As a result, the developed water electrolysis system can analyze water pump dynamics and hydrogen generation according to temperature dynamics by reflecting the dynamics of temperature.

Keywords

References

  1. F. Barbir, "PEM electrolysis for production of hydrogen from renewable energy sources", Solar Energy, Vol. 78, No. 5, 2005, pp. 661-669, doi: https://doi.org/10.1016/j.solener.2004.09.003.
  2. J. Turner, G. Sverdrup, M. K. Mann, P. C. Maness, B. Kroposki, M. Ghirardi, R. J. Evans, and D. Blake, "Renewable hydrogen production", Int. J. Energy Res., Vol. 32, No. 5, 2007, pp. 379 -407, doi: https://doi.org/10.1002/er.1372.
  3. P. Millet, R. Ngameni, S.A. Grigoriev, N. Mbemba, F. Brisset, A. Ranjbari, and C. Etievant, "PEM water electrolyzers: from electrocatalysis to stack development", Int. J. Hydrogen Energy, Vol. 35, No. 10, 2010, pp. 5043-5052, doi: https://doi.org/10.1016/j.ijhydene.2009.09.015.
  4. P. Millet, N. Mbemba, S. A. Grigoriev, V. N. Fateev, A. Aukauloo, and C. Etievant, "Electrochemical performances of PEM water electrolysis cells and perspectives", Int. J. Hydrogen Energy, Vol. 36, No. 6, 2011, pp. 4134-4142, doi: https://doi.org/10.1016/j.ijhydene.2010.06.105.
  5. S. A. Grigoriev, V. I. Porembskiy, S. V. Korobtsev, V. N. Fateev, F. Aupretre, and P. Millet, "High-pressure PEM water electrolysis and corresponding safety issues", Int. J. Hydrogen Energy, Vol. 36, No. 3, 2011, pp. 2721-2728, doi: https://doi.org/10.1016/j.ijhydene.2010.03.058.
  6. P. Millet, R. Ngameni, S. A. Grigoriev, and V. N. Fateev, "Scientific and engineering issues related to PEM technology: water electrolysers, fuel cells and unitized regenerative systems", Int. J. Hydrogen Energy, Vol. 36, No. 6, 2011, pp. 4156-4163, doi: https://doi.org/10.1016/j.ijhydene.2010.06.106.
  7. J. Nieminen, I. Dincer, and G. Naterer, "Comparative performance analysis of PEM and solid oxide steam electrolysers", Int. J. Hydrogen Energy, Vol. 35, No. 20, 2010, pp. 10842-10850, doi: https://doi.org/10.1016/j.ijhydene.2010.06.005.
  8. P. Choi, D. G. Bessarabovb, and R. Dattaa, "A simple model for solid polymer electrolyte (SPE) water electrolysis", Solid State Ionics, Vol. 175, No. 1-4, 2004, pp. 535-539, doi: https://doi.org/10.1016/j.ssi.2004.01.076.
  9. H. Gorgun, "Dynamic modelling of a proton exchange membrane (PEM) electrolyzer", Int. J. Hydrogen Energy, Vol. 31, No. 1, 2006, pp. 29-38, doi: https://doi.org/10.1016/j.ijhydene.2005.04.001.
  10. C. Y. Biaku, N. V. Dale, M. D. Mann, H. Salehfar, A. J. Peters, and T. Han, "A semiempirical study of the temperature dependence of the anode charge transfer coefficient of a 6 kW PEM electrolyzer", Int. J. Hydrogen Energy, Vol. 33, No. 16, 2008, pp. 4247-4254, doi: https://doi.org/10.1016/j.ijhydene.2008.06.006.
  11. K. W. Harrison, E. Hernandez-Pacheco, M. Mann, and H. Salehfar, "Semiempirical model for determining PEM electrolyzer stack characteristics", J. Fuel Cell Sci. Technol., Vol. 3, No. 2, 2006, pp. 220-223, doi: https://doi.org/10.1115/1.2174072.
  12. N. V. Dale, M. D. Mann, and H. Salehfar, "Semiempirical model based on thermodynamic principles for determining 6 kW proton exchange membrane electrolyzer stack characteristics", Journal of Power Sources, Vol. 185, No. 2, 2008, pp. 1348-1353, doi: https://doi.org/10.1016/j.jpowsour.2008.08.054.
  13. F. Marangio, M. Santarelli, and M. Cali, "Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production", Int. J. Hydrogen Energy, Vol. 34, No. 3, 2009, pp. 1143-1158, doi: https://doi.org/10.1016/j.ijhydene.2008.11.083.
  14. M. Santarelli, P. Medina, and M. Cali, "Fitting regression model and experimental validation for a high-pressure PEM electrolyzer", Int. J. Hydrogen Energy, Vol. 34, No. 6, 2009, pp. 2519-2530, doi: https://doi.org/10.1016/j.ijhydene.2008.11.036.
  15. M. E. Lebbal and S. Lecoeuche, "Identification and monitoring of a PEM electrolyser based on dynamical modelling", Int. J. Hydrogen Energy, Vol. 34, No. 14, 2009, pp. 5992-5999, doi: https://doi.org/10.1016/j.ijhydene.2009.02.003.
  16. A. Awasthi, K. Scott, and S. Basu, "Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production", Int. J. Hydrogen Energy, Vol. 36, No. 22, 2011, pp. 14779-14786, doi: https://doi.org/10.1016/j.ijhydene.2011.03.045.
  17. B. Lee, K. Park, and H. Kim, "Dynamic simulation of PEM water electrolysis and comparison with experiments", Int. J. Electrochem. Sci., Vol. 8, 2013, pp. 235-248. Retrieved from http://electrochemsci.org/papers/vol8/80100235.pdf.
  18. B. Han, S. M. Steen, J. Mo, and F. Y. Zhang, "Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy", Int. J. Hydrogen Energy, Vol. 40, No. 22, 2015, pp. 7006-7016, doi: https://doi.org/10.1016/j.ijhydene.2015.03.164.
  19. Z. Abdin, C. J. Webb, and E. M. Gray, "Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell", Int. J. Hydrogen Energy, Vol. 40, No. 39, 2015, pp. 13243-13257, doi: https://doi.org/10.1016/j.ijhydene.2015.07.129.
  20. K. Haraldsson and K. Wipke, "Evaluating PEM fuel cell system models", Journal of Power Sources, Vol. 126, No. 1-2, 2004, pp. 88-97, doi: https://doi.org/10.1016/j.jpowsour.2003.08.044.
  21. P. R. Pathapati, X. Xue, and J. Tang, "A new dynamic model for predicting transient phenomena in a PEM fuel cell system", Renewable Energy, Vol. 30, No. 1, 2005, pp. 1-22, doi: https://doi.org/10.1016/j.renene.2004.05.001.
  22. A. J. del Real, A. Arce, and C. Bordons, "Development and experimental validation of a PEM fuel cell dynamic model", Journal of Power Sources, Vol. 173, No. 1, 2007, pp. 310-324, doi: https://doi.org/10.1016/j.jpowsour.2007.04.066.
  23. C. Wang, M. H. Nehrir, and S. R. Shaw, "Dynamic models and model validation for PEM fuel cells using electrical circuits", IEEE Transactions on Energy Conversion, Vol. 20, No. 2, 2005, pp. 442-451, doi: https://doi.org/10.1109/TEC.2004.842357.
  24. G. L. Arsov, "Improved parametric PSpice model of a PEM fuel cell", 2008 11th International Conference on Optimization of Electrical and Electronic Equipment, 2008, pp. 203-208, doi: https://doi.org/10.1109/OPTIM.2008.4602367.
  25. C. Spiegel, "PEM fuel cell modeling and simulation using Matlab", Academic Press/Elsevier, USA/Netherlands, 2008.
  26. A. C. Olesen, C. Romer, and S. K. Kaer, "A numerical study of the gas-liquid, two-phase flow maldistribution in the anode of a high pressure PEM water electrolysis cell", Int. J. Hydrogen Energy, Vol. 41, No. 1, 2016, pp. 52-68, doi: https://doi.org/10.1016/j.ijhydene.2015.09.140.