DOI QR코드

DOI QR Code

Mechanical Properties and Wind Energy Harvesting Characteristics of PZT-Based Piezoelectric Ceramic Fiber Composites

PZT계 압전 세라믹 파이버 복합체의 기계적 물성과 압전 풍력 에너지 하베스팅 특성

  • Lee, Min-Seon (Optic & Electronic Components Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Jin-woo (Department of Materials Science and Engineering, Yonsei University) ;
  • Jeong, Young-Hun (Optic & Electronic Components Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • 이민선 (한국세라믹기술원 광전자부품소재센터) ;
  • 박진우 (연세대학교 신소재공학과) ;
  • 정영훈 (한국세라믹기술원 광전자부품소재센터)
  • Received : 2020.11.16
  • Accepted : 2020.12.28
  • Published : 2021.03.01

Abstract

Piezoelectric ceramic fiber composite (PCFC) was fabricated using a planar electrode printed piezoelectric ceramic fiber driven in transverse mode for small-scale wind energy harvester applications. The PCFC consisted of an epoxy matrix material and piezoelectric ceramic fibers sandwiched by interdigitated electrode (IDE) patterned polyimide films. The PCFC showed an excellent mechanical performance under a continuous stress. For the fabrication of PCB cantilever harvester, five -PCFCs were vertically attached onto a flexible printed circuit board (PCB) substrate, and then PCFCs were serially connected through a printed Cu circuit. The energy harvesting performance was evaluated applying an inverted structure, which imples its free leading edge located at an open end but the trailing edge at a clamped end, to enhance strain energy in a wind tunnel. The output voltage of the PCB cantilever harvester was increased as the wind speed increased. The maximum output power was 17.2 ㎼ at a resistance load of 200 ㏀ and wind speed of 9 m/s. It is considered that the PCB cantilever energy harvester reveals a potential use for wind energy harvester applications.

Keywords

References

  1. A. Mohammadnia, A. Rezania, B. M. Ziapour, F. Sedaghati, and L. Rosendahl, Energy Convers. Manage., 205, 112352 (2020). [DOI: https://doi.org/10.1016/j.enconman.2019.112352]
  2. Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, Y. Su, Z. Wu, and Z. L. Wang, Nano Energy, 6, 129 (2014). [DOI: https://doi.org/10.1016/j.nanoen.2014.03.015]
  3. H. Mutsuda, S. Rahmawati, N. Taniguchi, T. Nakashima, and Y. Doi, Sustainable Energy Technol. Assess., 35, 160 (2019). [DOI: https://doi.org/10.1016/j.seta.2019.07.001]
  4. E. Celik, E. Kurt, and N. Ozturk, Int. J. Electron., 107, 226 (2019). [DOI: https://doi.org/10.1080/00207217.2019.1643039]
  5. http://ko.wikipedia.org/wiki/%ED%92%8D%EB%A0%A5_%EB%B0%9C%EC%A0%84 (2020).
  6. W. Wang, X. He, X. Wang, M. Wang, and K. Xue, Sens. Actuators, A, 279, 467 (2018). [DOI: https://doi.org/10.1016/j.sna.2018.06.059]
  7. J. Wang, S. Gu, C. Zhang, G. Hu, G. Chen, K. Yang, H. Li, Y. Lai, G. Litak, and D. Yurchenko, Energy Convers. Manage., 213, 112835 (2020). [DOI: https://doi.org/10.1016/j.enconman.2020.112835]
  8. Y. Feng, L. Zhang, Y. Zheng, D. Wang, F. Zhou, and W. Liu, Nano Energy, 55, 260 (2019). [DOI: https://doi.org/10.1016/j.nanoen.2018.10.075]
  9. W. Sun, Z. Ding, Z. Qin, F. Chu, and Q. Han, Nano Energy, 70, 104526 (2020). [DOI: https://doi.org/10.1016/j.nanoen.2020.104526]
  10. Z. Lu, Q. Wen, X. He, and Z. Wen, Appl. Sci., 9, 4823 (2019). [DOI: https://doi.org/10.3390/app9224823]
  11. B. Yan, N. Yu, L. Zhang, H. Ma, C. Wu, K. Wang, and S. Zhou, Smart Mater. Struct., 29, 025022 (2020). [DOI: https://doi.org/10.1088/1361-665x/ab62e1]
  12. M. Perez, S. Boisseau, P. Gasnier, J. Willemin, M. Geisler, and J. L. Reboud, Smart Mater. Struct., 25, 045015 (2016). [DOI: https://doi.org/10.1088/0964-1726/25/4/045015]
  13. M. Bi, Z. Wu, S. Wang, Z. Cao, Y. Cheng, X. Ma, and X. Ye, Nano Energy, 75, 104968 (2020). [DOI: https://doi.org/10.1016/j.nanoen.2020.104968]
  14. H. Elahi, M. Eugeni, F. Fune, L. Lampani, F. Mastroddi, G. P. Romano, and P. Gaudenzi, Micromachines, 11, 933 (2020). [DOI: https://doi.org/10.3390/mi11100933]
  15. M. Zhou, Q. Chen, Z. Xu, and W. Wang, AIP Adv., 9, 035213 (2019). [DOI: https://doi.org/10.1063/1.5082811]
  16. W. J. Su and W. Y. Lin, Int. J. Mech. Sci., 173, 105457 (2020). [DOI: https://doi.org/10.1016/j.ijmecsci.2020.105457]
  17. F. M. Gharghani, M. A. Bijarchi, O. Mohammadi, and M. B. Shafii, Int. J. Low-Carbon Tech., (In press). [DOI: https://doi.org/10.1093/ijlct/ctaa060]
  18. J. D. Hobeck and D. J. Inman, Smart Mater. Struct., 21, 105024 (2012). [DOI: https://doi.org/10.1088/0964-1726/21/10/105024]
  19. H. Liu, S. Zhang, T. Kobayashi, T. Chen, and C. Lee, Micro Nano Lett., 9, 286 (2014). [DOI: https://doi.org/10.1049/mnl.2013.0750]
  20. D. Zhao, X. Hu, T. Tan, Z. Yan, and W. Zhang, Energy Convers. Manage., 222, 113260 (2020). [DOI: https://doi.org/10.1016/j.enconman.2020.113260]
  21. J. Wang, L. Geng, S. Zhou, Z. Zhang, Z. Lai, and D. Yurchenko, Acta Mech. Sin., 36, 592 (2020). [DOI: https://doi.org/10.1007/s10409-020-00928-5]
  22. L. Zhao and Y. Yang, Smart Struct. Syst., 19, 67 (2017). [DOI: https://doi.org/10.12989/sss.2017.19.1.067]
  23. J. Liu, H. Zuo, W. Xia, Y. Luo, D. Yao, Y. Chen, K. Wang, and Q. Li, Microelectron. Eng., 231, 111333 (2020). [DOI: https://doi.org/10.1016/j.mee.2020.111333]
  24. J.A.D.C. Dias, V.C.D. Sousa, A. Erturk, and C.D.M. Junior, Smart Mater. Struct., 29, 105006 (2020). [DOI: https://doi.org/10.1088/1361-665X/ab9add]
  25. S. Ju, S. H. Chae, Y. Choi, and C. H Ji, Sens. Actuators, A, 226, 126 (2015). [DOI: https://doi.org/10.1016/j.sna.2015.02.025]
  26. L. Nelson, C. Bowen, R. Stevens, M. Cain, and M. Stewart, Proc. Smart Structures and Materials 2003: Active Materials: Behavior and Mechanics (Smart Structures and Materials, San Diego, USA, 2003) p. 556. [DOI: https://doi.org/10.1117/12.484738]
  27. P. K. Vallittu, J. Prosthet. Dent., 81, 318 (1999). [DOI: https://doi.org/10.1016/S0022-3913(99)70276-3]