DOI QR코드

DOI QR Code

Crystallization Behavior and Electrical Properties of IZTO Thin Films Fabricated by Ion-Beam Sputtering

이온빔 스퍼터링으로 증착한 IZTO 박막의 결정화 거동과 전기적 특성 분석

  • Park, Ji Woon (School of Materials Science and Engineering, Yeungnam University) ;
  • Bak, Yang Gyu (School of Materials Science and Engineering, Yeungnam University) ;
  • Lee, Hee Young (School of Materials Science and Engineering, Yeungnam University)
  • 박지운 (영남대학교 신소재공학부) ;
  • 박양규 (영남대학교 신소재공학부) ;
  • 이희영 (영남대학교 신소재공학부)
  • Received : 2020.12.17
  • Accepted : 2020.12.30
  • Published : 2021.03.01

Abstract

Ion-beam sputtering (IBS) was used to deposit semiconducting IZTO (indium zinc tin oxide) thin films onto heavily-doped Si substrates using a sintered ceramic target with the nominal composition In0.4Zn0.5Sn0.1O1.5, which could work as a channel layer for oxide TFT (oxide thin film transistor) devices. The crystallization behavior and electrical properties were examined for the films in terms of deposition parameters, i.e. target tilt angle and substrate temperature during deposition. The thickness uniformity of the films were examined using a stylus profilometer. The observed difference in electrical properties was not related to the degree of crystallization but to the deposition temperature which affected charge carrier concentration (n), electrical resistivity (ρ), sheet resistance (Rs), and Hall mobility (μH) values of the films.

Keywords

References

  1. I. Noviyana, A. D. Lestari, M. Putri, M. S. Won, J. S. Bae, Y. W. Heo, and H. Y. Lee, Materials, 10, 702 (2017). [DOI: https://doi.org/10.3390/ma10070702]
  2. A. D. Lestari, I. Noviyana, M. Putri, Y. W. Heo, and H. Y. Lee, J. Nanosci. Nanotechnol., 19, 1686 (2019). [DOI: https://doi.org/10.1166/jnn.2019.16251]
  3. A. D. Lestari, M. Putri, Y. W. Heo, and H. Y. Lee, J. Nanosci. Nanotechnol., 20, 252 (2020). [DOI: https://doi.org/10.1166/jnn.2020.17222]
  4. R. N. Bukke, C. Avis, M. N. Naik, and J. Jang, IEEE Electron Device Lett., 39, 371 (2018). [DOI: https://doi.org/10.1109/LED.2018.2791633]
  5. Y. Zhang, H. Zhang, J. Yang, X. Ding, and J. Zhang, IEEE Trans. Electron Devices, 66, 5170 (2019). [DOI: https://doi.org/10.1109/TED.2019.2949702]
  6. I. H. Baek, J. J. Pyeon, S. H. Han, G. Y. Lee, B. J. Choi, J. H. Han, T. M. Chung, C. S. Hwang, and S. K. Kim, ACS Appl. Mater. Interfaces, 11, 14892 (2019). [DOI: https://doi.org/10.1021/acsami.9b03331]
  7. J. Sheng, T. H. Hong, D. H. Kang, Y. Yi, J. H. Lim, and J. S. Park, ACS Appl. Mater. Interfaces, 11, 12683 (2019). [DOI: https://doi.org/10.1021/acsami.9b02999]
  8. J. W. Park, S. W. Han, N. Jeon, J. Jang, and S. Yoo, IEEE Electron Device Lett., 29, 1319 (2008). [DOI: https://doi.org/10.1109/LED.2008.2005737]
  9. R. S. Sonawane, S. G. Hegd e, and M. K. Dongare, Mater. Chem. Phys., 77, 744 (2003). [DOI: https://doi.org/10.1016/S0254-0584(02)00138-4]
  10. H. K. Park, J. A. Jeong, Y. S. Park, H. K. Kim, and W. J. Cho, Thin Solid Films, 517, 5563 (2009). [DOI: https://doi.org/10.1016/j.tsf.2009.02.138]
  11. C. Y. Koo, K. J. Kim, K. H. Kim, and H. Y. Lee, J. Korean Ceram. Soc., 37, 1025 (2000).
  12. J. M. Park, J. Y. Lee, H. Y. Lee, and J. B. Park, Trans. Electr. Electron. Mater., 11, 266 (2010). [DOI: https://doi.org/10.4313/TEEM.2010.11.6.266]
  13. J. A. Lee, Y. W. Heo, J. H. Lee, H. Y. Lee, and J. J. Kim, J. Nanoelectron. Optoelectron., 12, 598 (2017). [DOI: https://doi.org/10.1166/jno.2017.2054]
  14. Y. S. Kim, W. J. Hwang, K. T. Eun, and S. H. Choa, Appl. Surf. Sci., 257, 8134 (2011). [DOI: https://doi.org/10.1016/j.apsusc.2011.04.123]
  15. Y. D. Ko, C. H. Lee, D. K. Moon, and Y. S. Kim, Thin Solid Films, 547, 32 (2013). [DOI: https://doi.org/10.1016/j.tsf.2013.05.069]
  16. K. H. Kim, M. Putri, H. J. Lee, C. Y. Koo, J. A. Lee, J. J. Kim, and H. Y. Lee, J. Nanoelectron. Optoelectron., 10, 541 (2015). [DOI: https://doi.org/10.1166/jno.2015.1798]