DOI QR코드

DOI QR Code

Subthreshold Swing Model Using Scale Length for Symmetric Junctionless Double Gate MOSFET

대칭형 무접합 이중게이트 MOSFET에서 스케일 길이를 이용한 문턱전압 이하 스윙 모델

  • Jung, Hak Kee (Department of Electronic Engineering, Kunsan National University)
  • Received : 2021.01.13
  • Accepted : 2021.02.01
  • Published : 2021.03.01

Abstract

We present a subthreshold swing model for a symmetric junctionless double gate MOSFET. The scale length λ1 required to obtain the potential distribution using the Poisson's equation is a criterion for analyzing the short channel effect by an analytical model. In general, if the channel length Lg satisfies Lg > 1.5λ1, it is known that the analytical model can be sufficiently used to analyze short channel effects. The scale length varies depending on the channel and oxide thickness as well as the dielectric constant of the channel and the oxide film. In this paper, we obtain the scale length for a constant permittivity (silicon and silicon dioxide), and derive the relationship between the scale length and the channel length satisfying the error range within 5%, compared with a numerical method. As a result, when the thickness of the oxide film is reduced to 1 nm, even in the case of Lg < λ1, the analytical subthreshold swing model proposed in this paper is observed to satisfy the error range of 5%. However, if the oxide thickness is increased to 3 nm and the channel thickness decreased to 6 nm, the analytical model can be used only for the channel length of Lg > 1.8λ1.

Keywords

References

  1. B. Huang, X. Bai, S. K. Lam, and S. J. Kim, Sci. Rep., 10, 2279 (2020). [DOI: https://doi.org/10.1038/s41598-020-59049-5]
  2. C. Yoon, S. Moon, and C. Shin, Nano Convergence, 7, 19 (2020). [DOI: https://doi.org/10.1186/s40580-020-00230-x]
  3. A. Es-Sakhi and M. Chowdhury, Microelectron. J., 62, 30 (2017). [DOI: https://doi.org/10.1016/j.mejo.2017.02.005]
  4. R. Saha, B. Bhowmick, and S. Baishya, Int. J. Electron., 106, 553 (2019). [DOI: https://doi.org/10.1080/00207217.2018.1545258]
  5. Y. H. Shin, S. Weon, D. Hong, and I. Yun, IEEE Trans. Electron Device, 64, 1433 (2017). [DOI: https://doi.org/10.1109/TED.2017.2664825]
  6. S. Darwin and T.S.A. Samuel, J. Nano Res., 56, 71 (2019). [DOI: https://doi.org/10.4028/www.scientific.net/jnanor.56.71]
  7. Q. Xie, Z. Wang, and Y. Taur, IEEE Trans. Electron Device, 64, 3511 (2017). [DOI: https://doi.org/10.1109/TED.2017.2716969]
  8. X. Liang and Y. Taur, IEEE Trans. Electron Devices, 51, 1385 (2004). [DOI: https://doi.org/10.1109/TED.2004.832707]
  9. H. Jung, Int. J. Electr. Electron. Eng. Telecommun., 10, 1747 (2020). [DOI: https://doi.org/10.11591/ijece.v10i2.pp1747-1754]
  10. H. K. Jung, J. Korean Inst. Electr. Electron. Mater. Eng., 32, 104 (2019). [DOI: https://doi.org/10.4313/JKEM.2019.32.2.104]
  11. H. Jung, Int. J. Electr. Electron. Eng. Telecommun., 8, 334 (2019). [DOI: https://doi.org/10.18178/ijeetc.8.6.334-339]
  12. C. Jiang, R. Liang, J. Wang, and J. Xu, AIP Adv., 5, 057122 (2015). [DOI: https://doi.org/10.1063/1.4921086]
  13. H. Jung, J. Inst. Korean Electr. Electron. Eng., 24, 194 (2020). [DOI: https://doi.org/10.7471/ikeee.2020.24.1.194]
  14. H. Jung, Information, 20, 4983 (2017).
  15. D. J. Frank, Y. Taur, and H.S.P. Wong, IEEE Electron Device Lett., 19, 385 (1998). [DOI: https://doi.org/10.1109/55.720194]