DOI QR코드

DOI QR Code

Effects of blade configuration and solidity on starting torque of Darrieus wind turbine

  • Roh, Sung-Cheoul (Department of Environmental Engineering, Yonsei University) ;
  • Kang, Seung-Hee (Department of Aerospace Engineering, Jeonbuk National University)
  • Received : 2020.08.31
  • Accepted : 2021.02.22
  • Published : 2021.02.25

Abstract

This study investigates the effects of blade configuration and solidity of Darrieus wind turbine on the starting torque characteristics. Generally, the configuration of Darrieus wind turbine is divided into Troposkien, parabola, Catenary, Sandia, modified-parabola and straight types. A numerical analysis has been carried out using Multiple Stream Tube (MST) method to investigate the effect of blade configuration and solidity of Darrieus wind turbine on the starting torque under the initial low range of rotational speed. The simulation results show that the starting torque of Darrieus wind turbine varies considerably depending on the blade configuration. The initial starting torque was larger with Troposkien, Parabola, Catenary, and Sandia configurations than with modified parabola or straight types. The increase in solidity with increasing number of blades raised the starting torque and improved the dynamic stability during the initial operational speed of Darrieus wind turbine. Additionally, these torque results represent basic data for fluid-structure interaction (FSI) simulation of the steady-dynamic operation of the turbine.

Keywords

References

  1. Bachant, P. and Wosnik, M. (2016), "Effects of Reynolds number on the energy conversion and near-wake dynamics of a high solidity vertical-axis cross-flow turbine", Energies, 9(2), 73, 1-18. https://doi.org/10.3390/en9020073.
  2. Baker, J.R. (1983), "Features to aid or enable self starting of fixed pitch low solidity vertical axis wind turbines", J. Wind Eng. Ind. Aerod., 15(1-3), 369-380. https://doi.org/10.1016/0167-6105(83)90206-4.
  3. Batista, N.C., Melicio, R., Mendes, V.M.F., Calderon, M. and Ramiro, A. (2015), "On a self-start Darrieus wind turbine: Blade design and field tests", Renew. Sustain. Energy Rev., 52, 508-522. https://doi.org/10.1016/j.rser.2015.07.147.
  4. Bazilevs, Y., Korobenko, A., Deng, X., Yan, J., Kinzel, M. and Dabiri, O. (2014), "Fluid-structure interaction modeling of vertical-axis wind turbines", J. Appl. Mech., 81(8). https://doi.org/10.1115/1.4027466.
  5. Blackwell, B.F., Sheldahl, R.E. and Feltz, L.V. (1976), "Wind tunnel performance data for the Darrieus wind turbine with NACA0012 blades", SAND76-0130, Sandia National Laboratories.
  6. Castelli, M.R., Betta, S.D. and Benini, E. (2012), "Effects of blade number on a straight-bladed vertical-axis Darrieus wind turbine", Int. J. Aerosp. Mech. Eng., 6(1), 68-74. doi.org/10.5281/zenodo.1079974.
  7. Dominy, R., Lunt, P., Bickerdyke, A. and Dominy, J. (2007), "Self-starting capability of a Darrieus turbine", Proc. I. Mech. E. Part A: J. Power Energy, 221(1), 111-120. https://doi.org/10.1243/09576509JPE340.
  8. Douak, M., Aouachria, Z., Rabehi, R. and Allam, N. (2018), "Wind energy systems: Analysis of the self-starting physics of vertical axis wind turbine", Renew. Sustain. Energy Rev., 81, 1602-1610. https://doi.org/10.1016/j.rser.2017.05.238.
  9. Hill, N., Dominy, R., Ingram, G. and Dominy, J. (2009), "Darrieus turbines: the physics of self-starting", Proc. I Mech E, Part A: Journal of Power and Energy, 223(1), 21-29. https://doi.org/10.1243/09576509JPE615.
  10. Howell, R., Qin, N., Edwards, J. and Durrani, N. (2010), "Wind tunnel and numerical study of a small vertical axis win turbine", Renew. Energy, 35(2), 412-422. https://doi.org/10.1016/j.renene.2009.07.025.
  11. Islam, M., Ting, D.S.K. and Fartaj, A. (2008), "Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbine", Renew. Sustain. Energy Rev., 12(4), 1087-1109. https://doi.org/10.1016/j.rser.2006.10.023.
  12. Jin, X., Zhao, G., Gao, K. and Ju, W. (2015), "Darrieus vertical axis wind turbine: Basic research methods", Renew. Sustain. Energy Rev., 42, 212-225. https://doi.org/10.1016/j.rser.2014.10.021.
  13. Kentfield, J.A.C. (1996), The Fundamentals of Wind-Driven Water Pumpers, CRC Press, Boca Raton, U.S.A.
  14. Kirke, B.K. and Lazauskas, L. (1991), "Enhancing the performance of vertical axis wind turbine using a simple variable pitch system", Wind Eng., 15(4), 187-195.
  15. Kirke, B.K. and Lazauskas, L. (2011), "Limitations of fixed pitch Darrieus hydrokinetic turbines and the challenge of variable pitch", Renew. Energy, 36(3), 893-897. https://doi.org/10.1016/j.renene.2010.08.027.
  16. MacPhee, D.W. and Beyene, A. (2016), "Fluid-structure interaction analysis of a morphing vertical axis wind turbine", J. Fluids Struct., 60, 143-159. https://doi.org/10.1016/j.jfluidstructs.2015.10.010.
  17. Paraschivoiu, I. (2002), Wind Turbine Design with Emphasis on Darrieus Concept, Polytechnic International Press, Canada.
  18. Reis, G.E. and Blackwell, B.F. (1975), "Practical approximations to a Troposkien by straight-line and circular-arc segments", SAND 74-0100, Sandia National Laboratories.
  19. Rossetti, A. and Pavesi, G. (2013), "Comparison of different numerical approaches to the study of the H-Darrieus turbines start-up", Renew. Energy, 50, 7-19. https://doi.org/10.1016/j.renene.2012.06.025.
  20. Sengupta, A.R., Biswas, A. and Gupta, R. (2017), "Investigations of HDarrieus rotors for different blade parameters at low wind speeds", Wind Struct., 25(6), 551-567. https://doi.org/10.12989/was.2017.25.6.551.
  21. Sheldahl, R.E. and Klimas, P.C. (1981), "Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbine", SAND 81-2114, Sandia National Laboratories. https://doi.org/10.2172/6548367.
  22. Strickland, J.H. (1975), "The Darrieus turbine: a performance prediction model using multiple streamtubes", SAND 75-0431, Sandia National Laboratories.
  23. Untaroiu, A., Wood, H.G., Allaire, P.E. and Ribando, R.J. (2011), "Investigation of self-starting capability of vertical axis wind turbines using a computational fluid dynamics approach", J. Solar Energy Eng., 133(4). https://doi.org/10.1115/1.4004705.
  24. Worasinchai, S., Ingram, G.L. and Dominy, R.G. (2016), "The physics of H-Darrieus turbine starting behavior", J. Eng. Gas Turbines Power, 138(6). https://doi.org/10.1115/1.4031870.
  25. Zamani, M., Maghrebi, M.J. and Moshizi, S.A. (2016), "Numerical study of airfoil thickness effects on the performance of J-shaped straight blade vertical axis wind turbine", Wind Struct., 22(5), 595-616. https://doi.org/10.12989/was.2016.22.5.595.
  26. Zamani, M., Maghrebi, M.J. and Varedi, S.R. (2016), "Starting torque improvement using J-shaped straight-bladed Darrieus vertical axis wind turbine by means of numerical simulation", Renew. Energy, 95, 109-126. https://doi.org/10.1016/j.renene.2016.03.069.