DOI QR코드

DOI QR Code

Recent (2010-2019) foodborne outbreaks caused by viruses in the Republic of Korea along with their detection and inactivation methods

바이러스에 의한 최근(2010-2019) 국내 식중독 사고와 검출법 및 제어법에 대한 동향 조사

  • 권승욱 (단국대학교 식품공학과) ;
  • 김상순 (단국대학교 식품공학과)
  • Received : 2020.10.16
  • Accepted : 2020.12.28
  • Published : 2021.02.28

Abstract

In this review, recent foodborne outbreaks caused by viruses in the Republic of Korea (2010-2019) were analyzed. The human norovirus was found to be the major foodborne virus causing an average of 94.9% of the viral outbreaks. Reverse-transcription polymerase chain reaction (PCR) with electrophoresis has been widely used to detect viruses, but several rapid detection methods, including real-time PCR, multiplex PCR, and quantum dot assay, have also been suggested. For norovirus inactivation studies, surrogates such as murine norovirus and feline calicivirus have been widely used to identify the reduction rate owing to the limitations in laboratory cultivation. Conversely, direct cell infection studies have been conducted for other foodborne viruses such as adenovirus, astrovirus, rotavirus, and hepatitis A or E virus. Moreover, virucidal mechanisms using various physical and chemical treatments have been revealed. These recent studies suggest that rapid in situ detection and effective control are valuable for ensuring food safety against viral infections.

본 논문에서는 최근 10년간(2010-2019년) 바이러스에 의한 식중독 통계 및 바이러스 검출법과 제어법에 대한 자료를 정리하여 나타냈다. 국내에서 지난 10년 동안 바이러스에 의해 발생한 식중독 사고 488건 중 94.9%가 노로바이러스에 의한 것으로 확인되어 노로바이러스가 국내에서 가장 주요한 식중독 바이러스로 생각된다. 노로바이러스를 검출하는 방법으로는 PCR을 이용한 방법이 주로 보고되고 있으며 현재(2020년 12월) 식품 공전에 등록된 방법(고시 제 2010-45호)에 따라 전기 영동을 기반으로 한 one-step RT PCR 및 semi-nested PCR 방법이 널리 이용되고 있다. 또한 최근 DNA sequencing 기술이 발달됨에 따라서 검출된 바이러스의 서열을 분석하여 이미 보고된 바이러스의 서열과 비교한 논문들이 많이 보고되었다. 이 외에도 real-time PCR을 적용한 논문들도 보고되고 있으며 앞으로는 전기 영동을 실시하는 conventional PCR을 대신하여 신속하게 정량 검출이 가능한 realtime PCR의 활용이 늘어날 것으로 생각한다. 기타 바이러스의 검출에 있어서도 역시 PCR을 활용한 방법이 주로 보고되고 있으며 multiplex PCR을 활용하여 여러 종류의 바이러스를 동시에 검출하고자 하는 노력이 이루어지고 있다. 더 나아가서, 자기 면역력 분리와 퀀텀닷 분석 방법 등을 이용한 신속 검출법이 제시되고 있어 앞으로 여러 식품에 오염된 바이러스를 현장에서 신속분리 및 검출하는데 이용할 수 있을 것으로 전망된다. 한편, 노로바이러스는 실험실에서 배양하기가 어렵기 때문에 노로바이러스 제어 연구는 대체재를 이용한 방법들이 주를 이루었다. 옴 가열을 포함한 여러 종류의 열처리와 초고압, 오존, 감마선, 광펄스 등의 비가열 처리를 이용하여 노로바이러스의 저감 정도를 살펴본 연구들이 최근 보고되었다. 일반적으로 물이나 완충용액보다는 식품 샘플에서 바이러스의 저감 정도가 낮게 관찰되었는데 식품 matrix가 이러한 물리적 처리에 간섭 효과를 나타내기 때문으로 생각되며 이를 극복하기 위해서는 여러 물리적, 화학적 처리를 조합하여 처리할 필요가 있다. 기타 바이러스 제어 연구에 있어서는 열, 광펄스, 고압력 등의 물리적 처리와 더불어 살균제(sanitizer)를 적용한 논문들이 보고되고 있으며 식중독 바이러스의 저감 메커니즘에 대한 체계적인 연구가 수행되고 있는 것을 확인하였다. 여러 물리적, 화학적 처리에 대해서 식중독 바이러스가 저항성을 갖는 이유와 사멸되는 메커니즘을 정확하게 이해한다면 추후 여러 식품에서의 바이러스에 대한 안전성을 확보하는데 도움이 될 것으로 사료된다.

Keywords

References

  1. Ban GH, Yoon H, Kang DH. A comparison of saturated steam and superheated steam for inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes biofilms on polyvinyl chloride and stainless steel. Food Control. 40: 344-350 (2014) https://doi.org/10.1016/j.foodcont.2013.12.017
  2. Barnaud E, Rogee S, Garry P, Rose N, Pavio N. Thermal inactivation of infectious hepatitis E virus in experimentally contaminated food. Appl. Environ. Microb. 78: 5153-5159 (2012) https://doi.org/10.1128/AEM.00436-12
  3. Bozkurt H, Ye X, Harte F, D'Souza DH, Davidson P.M. Thermal inactivation kinetics of hepatitis A virus in spinach. Int. J. Food Microbiol. 193: 147-151 (2015) https://doi.org/10.1016/j.ijfoodmicro.2014.10.015
  4. Brie A, Boudaud N, Mssihid A, Loutreul J, Bertrand I, Gantzer C. Inactivation of murine norovirus and hepatitis A virus on fresh raspberries by gaseous ozone treatment. Food Microbiol. 70: 1-6 (2018) https://doi.org/10.1016/j.fm.2017.08.010
  5. Centers for Disease Control and Prevention (CDC). Prevention of hepatitis A through active or passive immunization: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep. 55: 1-23 (2006)
  6. Cho KB. Construction of improved PCR primer set for the detection of human enteric adenovirus 41. Biomed. Sci. Lett. 24: 230-238 (2018) https://doi.org/10.15616/BSL.2018.24.3.230
  7. Cho M, Cates EL, Kim JH. Inactivation and surface interactions of MS-2 bacteriophage in a TiO2 photoelectrocatalytic reactor. Water Res. 45: 2014-2110 (2011)
  8. Choi W, Kim SS, Park SH, Ahn JB, Kang DH. Numerical analysis of rectangular type batch ohmic heater to identify the cold point. Food Sci. Nutr. 8: 648-658 (2020) https://doi.org/10.1002/fsn3.1353
  9. Cook N, Williams L, D'Agostino M. Prevalence of Norovirus in produce sold at retail in the United Kingdom. Food Microbiol. 79: 85-89 (2019) https://doi.org/10.1016/j.fm.2018.12.003
  10. Cromeans T, Park GW, Costantini V, Lee D, Wang Q, Farkas T, Lee A, Vinje J. Comprehensive comparison of cultivable norovirus surrogates in response to different inactivation and disinfection treatments. Appl. Environ. Microb. 80: 5743-5751 (2014) https://doi.org/10.1128/AEM.01532-14
  11. Ettayebi K, Crawford SE, Murakami K, Broughman JR, Karandikar U, Tenge VR, Neill FH, Blutt SE, Zeng XL, Qu L, Kou B, Opekun AR, Burrin D, Graham DY, Ramani S, Atmar R, Estes M. Replication of human noroviruses in stem cell-derived human enteroids. Science. 353:1387-1393 (2016) https://doi.org/10.1126/science.aaf5211
  12. Feng K, Divers E, Ma Y, Li J. Inactivation of a human norovirus surrogate, human norovirus virus-like particles, and vesicular stomatitis virus by Gamma irradiation. Appl. Environ. Microb. 77: 3507-3517 (2011) https://doi.org/10.1128/AEM.00081-11
  13. Fraisse A, Coudray-Meunier C, Martin-Latil S, Hennechart-Collette C, Delannoy S, Fach P, Perelle S. Digital RT-PCR method for hepatitis A virus and norovirus quantification in soft berries. Int. J. Food Microbiol. 243: 36-45 (2017) https://doi.org/10.1016/j.ijfoodmicro.2016.11.022
  14. Fuzawa M, Ku KM, Palma-Salgado, SP, Nagasaka K, Feng H, Juvik JA, Sano D, Shisler JL, Nguyen TH. Effect of leaf surface chemical properties on efficacy of sanitizer for rotavirus inactivation. Appl. Environ. Microb. 82: 6214-6222 (2016) https://doi.org/10.1128/AEM.01778-16
  15. Grondahl-Rosado RC, Yarovitsyna E, Trettenes E, Myrmel M, Robertson LJ. A one year study on the concentrations of norovirus and enteric adenoviruses in wastewater and a surface drinking water source in Norway. Food Environ. Virol. 6: 232-245 (2014) https://doi.org/10.1007/s12560-014-9161-5
  16. Han JY, Song WJ, Kang JH, Min SC, Eom S, Hong EJ, Ryu S, Kim SB, Cho S, Kang DH. Effect of cold atmospheric pressure plasma-activated water on the microbial safety of Korean rice cake. LWT-Food Sci. Technol. 120: 108918 (2020) https://doi.org/10.1016/j.lwt.2019.108918
  17. Harrison L, Ramos TDM, Wu X, DiCaprio E. Presence of hepatitis E virus I commercially available pork products. Int. J. Food Microbiol. 339: 109033 (2021) https://doi.org/10.1016/j.ijfoodmicro.2020.109033
  18. Hirneisen KA, Markland SM, Kniel KE. Ozone inactivation of norovirus surrogates on fresh produce. J. Food Protect. 74: 836-839 (2011) https://doi.org/10.4315/0362-028X.JFP-10-438
  19. Huang R, Ye M, Li X, Ji L, Karwe M, Chen H. Evaluation of high hydrostatic pressure inactivation of human norovirus on strawberries, blueberries, raspberries and in their purees. Int. J. Food Microbiol. 223: 17-24 (2016) https://doi.org/10.1016/j.ijfoodmicro.2016.02.002
  20. Hyeon JY, Chon JW, Song KY, Hwang IG, Kwak HS, Lee JS, Kim MS, Lee JB, Seo KH. Rapid detection method for human rotavirus from vegetables by a combination of filtration and integrated cell culture/real-time reverse transcription PCR. Korean J. Food Sci. Tech. Mys. 47: 117-123 (2011)
  21. Jean J. Morales-Rayas R. Anoman MN, Lamhoujeb S. Inactivation of hepatitis A virus and norovirus surrogate in suspension and on food-contact surfaces using pulsed UV light (pulsed light inactivation of food-borne viruses). Food Microbiol. 28: 568-572 (2011) https://doi.org/10.1016/j.fm.2010.11.012
  22. Jeong SG, Ryu S, Kang DH. Salt content dependent dielectric properties of pistachios relevant to radio-frequency pasteurization. Sci. Rep. 9: 2400 (2019) https://doi.org/10.1038/s41598-019-38987-9
  23. Jones TH., Muehlhauser V. Frequency of hepatitis E virus, rotavirus and porcine enteric calicivirus at various stages of pork carcass processing in two pork processing plants. Int. J. Food Microbiol. 259: 29-34 (2017) https://doi.org/10.1016/j.ijfoodmicro.2017.07.019
  24. Kang G, Kim HS, Kim HS., Kim JS., Song W, Park JY, Cho HC. Detection of rotavirus from the inner surfaces of domestic refrigerators. Lab. Med. Online 6: 93 (2016) https://doi.org/10.3343/lmo.2016.6.2.93
  25. Kang JH, Shim HM, Kim KY. Monitoring of norovirus and indicator microorganisms from agricultural products and environmental samples in Korea. Korean J. Food Sci. Technol. 49: 123-131 (2017) https://doi.org/10.9721/KJFST.2017.49.2.123
  26. Kim DW, Kim SR, Moon JH, Kim SJ, Oh MJ. Foodborne virus diseases and detection methods. Food Sci. Ind. 41: 53-57 (2008)
  27. Kim JK, Kim JW. Molecular epidemiologic trends of diarrhea-causing virus infection from clinical specimens in Cheonan, Korea, in 2010-2012. J. Clin. Lab. Anal. 28: 47-51 (2014a) https://doi.org/10.1002/jcla.21642
  28. Kim K, Kim DA. The comparison between serologic tests and Magicplex HepaTrio Real-time PCR in the diagnosis of viral hepatitis. Lab. Med. Online. 3: 23-28 (2013) https://doi.org/10.3343/lmo.2013.3.1.23
  29. Kim SS, Choi W, Kang DH. Application of low frequency pulsed ohmic heating for inactivation of foodborne pathogens and MS-2 phage in buffered peptone water and tomato juice. Food Microbiol. 63: 22-27 (2017) https://doi.org/10.1016/j.fm.2016.10.021
  30. Kim SS, Choi W, Kang DH. Mathematical modeling of ohmic heating for inactivation of acid-adapted foodborne pathogens in tomato juice. Int. J. Food Eng. 16: 1-11 (2020)
  31. Kim SS, Kang DH. Synergistic effect of carvacrol and ohmic heating for inactivation of E. coli O157:H7, S. Typhimurium, L. monocytogenes, and MS-2 bacteriophage in salsa. Food Control. 73: 300-305 (2017a) https://doi.org/10.1016/j.foodcont.2016.08.022
  32. Kim SS, Kang DH. Combination treatment of ohmic heating with various essential oil components for inactivation of food-borne pathogens in buffered peptone water and salsa. Food Control. 80: 29-36 (2017b) https://doi.org/10.1016/j.foodcont.2017.04.001
  33. Kim YJ, Lee MG, Kam SK. Characteristics of Norovirus Occurrence in Jeju. J. Environ. Sci. Int. 23: 219-229 (2014b) https://doi.org/10.5322/JESI.2014.23.2.219
  34. Kingsley DH, Vincent EM, Meade GK, Watson C, Fan X. Inactivation of human norovirus using chemical sanitizers. Int. J. Food Microbiol. 171: 94-99 (2014) https://doi.org/10.1016/j.ijfoodmicro.2013.11.018
  35. Kovac K, Bouwknegt M, Diez-Valcarce M, Raspor P, Hernandez M, Rodriguez-Lazaro D. Evaluation of high hydrostatic pressure effect on human adenovirus using molecular methods and cell culture. Int. J. Food Microbiol. 157: 368-374 (2012) https://doi.org/10.1016/j.ijfoodmicro.2012.06.006
  36. Lacombe A, Niemira BA, Gurtler JB, Sites J, Boyd G, Kingsley DH, Li X, Chen H. Nonthermal inactivation of norovirus surrogates on blueberries using atmospheric cold plasma. Food Microbiol. 63: 1-5 (2017) https://doi.org/10.1016/j.fm.2016.10.030
  37. Lee H, Kwon J, Choi J, Won Y, Kim ES, Chung J, Jee M, Kim D, Lee H, Kwon J, Choi J, Won Y, Kim E, Chung J, Kim M, Kim D. Rapid detection of the hepatitis a virus from fresh lettuce using immunomagnetic separation and quantum dots assay. Korean J. Food Preserv. 21: 170-174 (2014) https://doi.org/10.11002/KJFP.2014.21.2.170
  38. Lee HM, Kim D. Use of IMS-RT-PCR for the rapid isolation and detection of hepatitis a virus from the swine feces. Korean J. Food Sci. Technol. 44: 638-642 (2012) https://doi.org/10.9721/KJFST.2012.44.5.638
  39. Lee JE, Ko G. Norovirus and MS2 inactivation kinetics of UV-A and UV-B with and without TiO2. Water Res. 47: 5607-5613 (2013) https://doi.org/10.1016/j.watres.2013.06.035
  40. Lee MJ, Kim WH, Cho HG, Lee SS. Epidemiological Study of Ground-waterborne norovirus GI.3-associated Gastroenteritis Outbreaks in Gyeonggi Province of South Korea in May 2011. J. Bacteriol. Virol. 42: 232-241 (2012) https://doi.org/10.4167/jbv.2012.42.3.232
  41. Leon JS, Kingsley DH, Montes JS, Richards GP, Lyon GM, Abdulhafid GM, Seitz SR, Fernandez ML, Teunis PF, Flick GJ, Moe CL. Randomized, double-blinded clinical trial for human norovirus inactivation in oysters by high hydrostatic pressure processing. Appl. Environ. Microb. 77: 5476-5482 (2011) https://doi.org/10.1128/AEM.02801-10
  42. Ministry of Food and Drug Safety (MFDS). Foodborne disease outbreak. Available from: https://www.foodsafetykorea.go.kr/main.do, Accessed Oct. 13, 2020
  43. Moon A, Ahn J, Choi WS. Elution buffers for human enteric viruses in vegetables with applications to norovirus detection. J. Food Hyg. Saf. 28: 287-292 (2013) https://doi.org/10.13103/JFHS.2013.28.4.287
  44. Oh SA, Park SH, Ham HJ, Seung HJ, Jang JI, Suh SW, Jo SJ, Choi SM, Jeong HS. Molecular characterization of norovirus and rotavirus in outbreak of acute gastroenteritis in Seoul. J. Bacteriol. Virol. 43: 307-316 (2013) https://doi.org/10.4167/jbv.2013.43.4.307
  45. Park JO, Jeon JS, Kim JK. Epidemiologic trends of diarrhea-causing virus infection analyzed by multiplex reverse transcription PCR in Cheonan, Korea, 2010-2018. Microbiol. Biotechnol. Lett. 47: 317-322 (2019a) https://doi.org/10.4014/mbl.1811.11007
  46. Park K, Park YS, Kwon JY, Yu HS, Lee HJ, Kim JH, Lee TS, Kim PH. Effect of heat treatment on male specific coliphage and norovirus concentrations in norovirus contaminated oyster Crassostrea gigas. Korean J. Fish. Aquat. Sci. 48: 898-903 (2015) https://doi.org/10.5657/KFAS.2015.0898
  47. Park Sh, Cho W, Kim SS, Kang DH. CFD simulation for designing a chlorine gaseous sanitizer treatment system. Food Bioprod. Process. 117: 388-395 (2019b) https://doi.org/10.1016/j.fbp.2019.08.008
  48. Persson S, Eriksson R, Lowther J, Ellstrom P, Simonsson M. Comparison between RT droplet digital PCR and RT real-time PCR for quantification of noroviruses in oysters. Int. J. Food Microbiol. 284: 73-83 (2018) https://doi.org/10.1016/j.ijfoodmicro.2018.06.022
  49. Sarah B, Roberto A, Rodriguez, Karl G, Linden. Inactivation of adenovirus using low-dose UV/H2O2 advanced oxidation. Water Res. 46: 6273-6278 (2012) https://doi.org/10.1016/j.watres.2012.08.036
  50. Shin SB, Oh EG, Lee HJ, Kim YK, Lee TS, Kim JH. Norovirus quantification in oysters Crassostrea gigas collected from Tongyeoung, Korea. Korean J. Fish. Aquat. Sci. 47: 501-507 (2014) https://doi.org/10.5657/KFAS.2014.0501
  51. US FDA. Irradiation in the production, processing and handling of food. Ionizing radiation for the treatment of food. Code of Federal Regulations 21CFR179.26 (1999)
  52. World Health Organization (WHO). Advice on the use of masks in the context of COVID-19: interim guidance, 5 Jun 2020. https://apps.who.int/iris/handle/10665/332293. Accessed Oct. 15, 2020
  53. Yang Z, Chambers H, DiCaprio E, Gao G, Li J. Internalization and dissemination of human norovirus and Tulane virus in fresh produce is plant dependent. Food Microbiol. 69: 25-32 (2018) https://doi.org/10.1016/j.fm.2017.07.015
  54. Yin W, Han Y, Xin H, Liu W, Song Q, Li Z, Gao S, Jiang F, Cao J, Bi S, Liu H. Hepatitis E outbreak in a mechanical factory in Qingdao City, China. Int. J. Infect. Dis. 86: 191-196 (2019) https://doi.org/10.1016/j.ijid.2019.07.006
  55. Yu H, Park YS, An S, Park K, Shim KB, Song KC, Lee TS. Defecation of norovirus from the oyster Crassostrea gigas by depuration following translocation of the growing area. Korean J. Fish. Aquat. Sci. 49: 109-115 (2016) https://doi.org/10.5657/KFAS.2016.0109