DOI QR코드

DOI QR Code

Synthesis of Manganese Oxide Coated Graphite Sheet for Zinc-Ion Batteries with Improved Energy Storage Performance

아연-이온 배터리의 에너지 저장 성능 향상을 위한 망간산화물이 코팅된 흑연시트의 제조

  • Lee, Young-Geun (Department of Energy Engineering, Gyeongnam National University of Science and Technology) ;
  • An, Geon-Hyoung (Department of Energy Engineering, Gyeongnam National University of Science and Technology)
  • 이영근 (경남과학기술대학교 에너지공학과) ;
  • 안건형 (경남과학기술대학교 에너지공학과)
  • Received : 2021.01.10
  • Accepted : 2021.01.15
  • Published : 2021.02.27

Abstract

Zinc-ion Batteris (ZIBs) are recently being considered as energy storage devices due to their high specific capacity and high safety, and the abundance of zinc sources. Especially, ZIBs can overcome the drawbacks of conventional lithium ion batteris (LIBs), such as cost and safety issues. However, in spite of their advantages, the cathode materials under development are required to improve performance of ZIBs, because the capacity and cycling stability of ZIBs are mainly influenced by the cathode materials. To design optimized cathode materials for high performance ZIBs, a novel manganese oxide (MnO2) coated graphite sheet is suggested herein with improved zinc-ion diffusion capability thanks to the uniformly decorated MnO2 on the graphite sheet surface. Especially, to optimize MnO2 on the graphite sheet surface, amounts of percursors are regulated. The optimized MnO2 coated graphite sheet shows a superior zinc-ion diffusion ability and good electrochemical performance, including high specific capacity of 330.8 mAh g-1 at current density of 0.1 A g-1, high-rate performance with 109.4 mAh g-1 at a current density of 2.0 A g-1, and remarkable cycling stability (82.2 % after 200 cycles at a current density of 1.0 A g-1). The excellent electrochemical performance is due to the uniformly decorated MnO2 on the graphite sheet surface, which leads to excellent zinc-ion diffusion ability. Thus, our study can provide a promising strategy for high performance next-generation ZIBs in the near future.

Keywords

References

  1. P. Simon and Y. Gogotsi, Nat. Mater., 7, 845 (2008). https://doi.org/10.1038/nmat2297
  2. S. C. Sekhar, G. Nagaraju and J. S. Yu, Nano Energy, 36, 58 (2017). https://doi.org/10.1016/j.nanoen.2017.04.019
  3. C. Kang, R. Baskaran, J. Hwang, B.-C. Ku and W. Choi, Carbon, 68, 493 (2014). https://doi.org/10.1016/j.carbon.2013.11.026
  4. G.-H. An, J. Hong, S. Pak, Y, Cho, S. Lee, B. Hou, S. N. Cha, Adv. Energy Mater., 10, 1902981 (2020). https://doi.org/10.1002/aenm.201902981
  5. G.-H. An, Korean J. Mater. Res., 29, 505 (2019). https://doi.org/10.3740/MRSK.2019.29.8.505
  6. Y.-G. Lee and G.-H. An, ACS Appl. Mater. Interfaces, 12, 41342 (2020). https://doi.org/10.1021/acsami.0c10512
  7. Y.-G. Lee and G.-H. An, Korean J. Mater. Res., 30, 458 (2020). https://doi.org/10.3740/MRSK.2020.30.9.458
  8. G.-H. An, Curr. Appl. Phys., 20, 605 (2020). https://doi.org/10.1016/j.cap.2020.02.010
  9. F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J. A. Dura, K. Xu and C. Wang, Nat. Mater., 17, 543 (2018). https://doi.org/10.1038/s41563-018-0063-z
  10. F. Wan and Z. Niu, Angew. Chem., Int. Ed., 58, 16358 (2019). https://doi.org/10.1002/anie.201903941
  11. F. Wan, Y. Zhang, L. Zhang, D. Liu, C. Wang, L. Song, Z. Niu and J. Chen, Angew. Chem., Int. Ed., 58, 7062 (2019). https://doi.org/10.1002/anie.201902679
  12. F. Ming, H. Liang, Y. Lei, S. Kandambeth, M. Eddaoudi and H. N. Alshareef, ACS Energy Lett., 3, 2602 (2018). https://doi.org/10.1021/acsenergylett.8b01423
  13. J. Ding, Z. Du, B. Li, L. Wang, S. Wang, Y. Gong and S. Yang, Adv. Mater., 31, 1904369 (2019). https://doi.org/10.1002/adma.201904369
  14. P. Hu, M. Yan, T. Zhu, X. Wang, X. Wei, J. Li, L. Zhou, Z. Li, L. Chen and L. Mai, ACS Appl. Mater. Interfaces, 9, 42717 (2017). https://doi.org/10.1021/acsami.7b13110
  15. Y. Li, S. Wang, J. R. Salvador, J. Wu, B. Liu, W. Yang, J. Yang, W. Zhang, J. Liu and J. Yang, Chem. Mater., 31, 2036 (2019). https://doi.org/10.1021/acs.chemmater.8b05093
  16. M. H. Alfaruqi, J. Gim, S. Kim, J. Song, J. Jo, S. Kim, V. Mathew and J. Kim, J. Power Sources, 288, 320 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.140
  17. G.-H. An, J. I. Sohn and H.-J. Ahn, J. Mater. Chem. A, 4, 2049 (2016). https://doi.org/10.1039/C5TA10067D
  18. Y.-G. Lee, G.-H. An and H.-J. Ahn, J. Alloys Compd., 751, 62 (2018). https://doi.org/10.1016/j.jallcom.2018.04.061
  19. Y.-G. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 28, 182 (2018). https://doi.org/10.3740/MRSK.2018.28.3.182
  20. Y.-G. Lee and H.-J. Ahn, Appl. Surf. Sci., 487, 389 (2019). https://doi.org/10.1016/j.apsusc.2019.05.095
  21. X. Sun, P. Liu, Y. Gu, T. E. Rufford and X. S. Zhao, RSC Adv., 6, 441717 (2016).
  22. J. Wang, J.-G. Wang, H. Liu, C. Wei and F. Kang, J. Mater. Chem., 7 13727 (2019). https://doi.org/10.1039/c9ta03541a
  23. G.-H. An, Y.-G. Lee and H.-J. Ahn, J. Alloys Compd., 764, 416 (2018). https://doi.org/10.1016/j.jallcom.2018.06.072