DOI QR코드

DOI QR Code

Optimal Porous Structure of MnO2/C Composites for Supercapacitors

  • Iwamura, Shinichiroh (Faculty of Engineering, Hokkaido University) ;
  • Umezu, Ryotaro (Graduate School of Chemical Sciences and Engineering, Hokkaido University) ;
  • Onishi, Kenta (Graduate School of Chemical Sciences and Engineering, Hokkaido University) ;
  • Mukai, Shin R. (Faculty of Engineering, Hokkaido University)
  • Received : 2020.12.21
  • Accepted : 2021.02.17
  • Published : 2021.03.27

Abstract

MnO2 can be potentially utilized as an electrode material for redox capacitors. The deposition of MnO2 with poor electrical conductivity onto porous carbons supplies them with additional conductive paths; as a result, the capacitance of the electrical double layer formed on the porous carbon surface can be utilized together with the redox capacitance of MnO2. However, the obtained composites are not generally suitable for industrial production because they require the use of expensive porous carbons and/or inefficient fabrication methods. Thus, to develop an effective preparation procedure of the composite, a suitable structure of porous carbons must be determined. In this study, MnO2/C composites have been prepared from activated carbon gels with various pore sizes, and their electrical properties are investigated via cyclic voltammetry. In particular, mesoporous carbons with a pore size of around 20 nm form a composite with a relatively low capacitance (98 F/g-composite) and poor rate performance despite the moderate redox capacitance obtained for MnO2 (313 F/g-MnO2). On the other hand, using macro-porous carbons with a pore size of around 60 nm increases the MnO2 redox capacitance (399 F/g-MnO2) as well as the capacitance and rate performance of the entire material (203 F/g-composite). The obtained results can be used in the industrial manufacturing of MnO2/C composites for supercapacitor electrodes from the commercially available porous carbons.

Keywords

References

  1. E. Frackowiak, Phys. Chem. Chem. Phys., 9, 1774 (2007). https://doi.org/10.1039/b618139m
  2. G. P. Wang, L. Zhang and J. J. Zhang, Chem. Soc. Rev., 41, 797 (2012). https://doi.org/10.1039/C1CS15060J
  3. Y. Hou, Y. W. Cheng, T. Hobson and J. Liu, Nano Lett., 10, 2727 (2010). https://doi.org/10.1021/nl101723g
  4. W. Chen, Z. Fan, L. Gu, X. Bao and C. Wang, Chem. Commun., 46, 3905 (2010). https://doi.org/10.1039/c000517g
  5. Z. J. Fan, J. Yan, T. Wei, L. J. Zhi, G. Q. Ning, T. Y. Li and F. Wei, Adv. Funct. Mater., 21, 2366 (2011). https://doi.org/10.1002/adfm.201100058
  6. J. Yan, Z. J. Fan, T. Wei, W. Z. Qian, M. L. Zhang and F. Wei, Carbon, 48, 3825 (2010). https://doi.org/10.1016/j.carbon.2010.06.047
  7. Z. S. Wu, W. C. Ren, D. W. Wang, F. Li, B. L. Liu and H. M. Cheng, Acs Nano, 4, 5835 (2010). https://doi.org/10.1021/nn101754k
  8. G. H. Yu, L. B. Hu, M. Vosgueritchian, H. L. Wang, X. Xie, J. R. McDonough, X. Cui, Y. Cui and Z. N. Bao, Nano Lett., 11, 2905 (2011). https://doi.org/10.1021/nl2013828
  9. T. Zhai, F. X. Wang, M. H. Yu, S. L. Xie, C. L. Liang, C. Li, F. M. Xiao, R. H. Tang, Q. X. Wu, X. H. Lu and Y. X. Tong, Nanoscale, 5, 6790 (2013). https://doi.org/10.1039/c3nr01589k
  10. M. X. Liu, L. H. Gan, W. Xiong, Z. J. Xu, D. Z. Zhu and L. W. Chen, J. Mater. Chem. A, 2, 2555 (2014). https://doi.org/10.1039/c3ta14445c
  11. X. Zhao, L. L. Zhang, S. Murali, M. D. Stoller, Q. H. Zhang, Y. W. Zhu and R. S. Ruoff, Acs Nano, 6, 5404 (2012). https://doi.org/10.1021/nn3012916
  12. C. C. Wang, H. C. Chen and S. Y. Lu, Chem. - Eur. J., 20, 517 (2014). https://doi.org/10.1002/chem.201303483
  13. H. Jiang, J. Ma and C. Z. Li, Adv. Mater., 24, 4197 (2012). https://doi.org/10.1002/adma.201104942
  14. Z. P. Li, J. Q. Wang, S. Liu, X. H. Liu and S. R. Yang, J. Power Sources, 196, 8160 (2011). https://doi.org/10.1016/j.jpowsour.2011.05.036
  15. C. Z. Yang, M. Zhou and Q. Xu, Phys. Chem. Chem. Phys., 15, 19730 (2013). https://doi.org/10.1039/c3cp53504e
  16. S. Zhu, H. Zhou, M. Hibino, I. Honma and M. Ichihara, Adv. Funct. Mater., 15, 381 (2005). https://doi.org/10.1002/adfm.200400222
  17. X. Dong, W. Shen, J. Gu, L. Xiong, Y. Zhu, H. Li and J. Shi, J. Phys. Chem. B, 110, 6015 (2006). https://doi.org/10.1021/jp056754n
  18. S. A. Al-Muhtaseb and J. A. Ritter, Adv. Mater., 15, 101 (2003). https://doi.org/10.1002/adma.200390020
  19. C. I. Merzbacher, S. R. Meier, J. R. Pierce and M. L. Korwin, J. Non-Cryst. Solids, 285, 210 (2001). https://doi.org/10.1016/S0022-3093(01)00455-0
  20. R. W. Pekala, J. Mater. Sci., 24, 3221 (1989). https://doi.org/10.1007/BF01139044
  21. R. W. Pekala, C. T. Alviso, F. M. Kong and S. S. Hulsey, J. Non-Cryst. Solids, 145, 90 (1992). https://doi.org/10.1016/S0022-3093(05)80436-3
  22. T. Tsuchiya, T. Mori, S. Iwamura, I. Ogino and S. R. Mukai, Carbon, 76, 240 (2014). https://doi.org/10.1016/j.carbon.2014.04.074
  23. J. H. Zhang, Y. B. Li, L. Wang, C. B. Zhang and H. He, Catal. Sci. Technol., 5, 2305 (2015). https://doi.org/10.1039/C4CY01461H