DOI QR코드

DOI QR Code

Improvement of Optical and Electrical Properties of AZO Thin Films by Controlling Fluorine Concentration

F 농도 조절을 통한 AZO 박막의 광학적 전기적 특성 향상

  • Jang, Suyoung (Department of Materials Science and Engineering, Chonnam National University) ;
  • Jang, Jun Sung (Department of Materials Science and Engineering, Chonnam National University) ;
  • Jo, Eunae (Department of Materials Science and Engineering, Chonnam National University) ;
  • Karade, Vijay Chandraknt (Department of Materials Science and Engineering, Chonnam National University) ;
  • Kim, Jihun (School of Integrated Technology, Gwangju Institute of Science and Technology) ;
  • Moon, Jong-Ha (Department of Materials Science and Engineering, Chonnam National University) ;
  • Kim, Jin Hyeok (Department of Materials Science and Engineering, Chonnam National University)
  • 장수영 (전남대학교 신소재공학과) ;
  • 장준성 (전남대학교 신소재공학과) ;
  • 조은애 (전남대학교 신소재공학과) ;
  • ;
  • 김지훈 (전기전자컴퓨터공학부, 광주과학기술원) ;
  • 문종하 (전남대학교 신소재공학과) ;
  • 김진혁 (전남대학교 신소재공학과)
  • Received : 2021.01.25
  • Accepted : 2021.02.10
  • Published : 2021.03.27

Abstract

Zinc oxide (ZnO) based transparent conducting oxides (TCO) thin films, are used in many applications such as solar cells, flat panel displays, and LEDs due to their wide bandgap nature and excellent electrical properties. In the present work, fluorine and aluminium-doped ZnO targets are prepared and thin films are deposited on soda-lime glass substrate using a RF magnetron sputtering unit. The aluminium concentration is fixed at 2 wt%, and the fluorine concentration is adjusted between 0 to 2.0 wt% with five different concentrations, namely, Al2ZnO98(AZO), F0.5AZO97.5(FAZO1), F1AZO97(FAZO2), F1.5AZO96.5(FAZO3), and F2AZO96(FAZO4). Thin films are deposited with an RF power of 40 W and working pressure of 5 m Torr at 270 ℃. The morphological analysis performed for the thin film reveals that surface roughness decreases in FAZO1 and FAZO2 samples when doped with a small amount of fluorine. Further, optical and electrical properties measured for FAZO1 sample show average optical transmissions of over 89 % in the visible region and 82.5 % in the infrared region, followed by low resistivity and sheet resistance of 3.59 × 10-4 Ωcm and 5.52 Ω/sq, respectively. In future, these thin films with excellent optoelectronic properties can be used for thin-film solar cell and other optoelectronics applications.

Keywords

References

  1. R. A. Afre, N. Sharma, M. Sharon and M. Sharon, Rev. Adv. Mater. Sci., 53, 79 (2018). https://doi.org/10.1515/rams-2018-0006
  2. L. Kerkache, A. Layadi and A. Mosser, J. Alloys Compd., 485, 46 (2009). https://doi.org/10.1016/j.jallcom.2009.06.103
  3. F.-H. Wang and C.-L. Chang, Appl. Surf. Sci., 370, 83 (2016). https://doi.org/10.1016/j.apsusc.2016.02.161
  4. T. Minami, Semicond. Sci. Technol., 20, S35 (2005). https://doi.org/10.1088/0268-1242/20/4/004
  5. S. Lu, Y. Sun, K. Ren, K. Liu, Z. Wang and S. Qu, Polymers, 10, 5 (2018). https://doi.org/10.3390/polym10010005
  6. F. Challali, D. Mendil, T. Touam, T. Chauveau, V. Bockelee, A. G. Sanchez, A. Chelouche and M.-P. Besland, Mater. Sci. Semicond. Process, 118, 105217 (2020). https://doi.org/10.1016/j.mssp.2020.105217
  7. K. Ellmer, Nat. Photonics, 6, 809 (2012). https://doi.org/10.1038/nphoton.2012.282
  8. I. Kim, K.-S. Lee, T. S. Lee, J.-H. Jeong, B.-K. Cheong, Y.-J. Baik and W. M. Kim, J. Appl. Phys., 100, 063701 (2006). https://doi.org/10.1063/1.2347715
  9. J. Ma, W. Zhang, J. Lin, Y. Sun, J. Ma, H. Xu, Y. Liu and G. Yang, J. Alloys Compd., 819, 153012 (2020). https://doi.org/10.1016/j.jallcom.2019.153012
  10. K. D. A. Kumar, S. Valanarasu, A. Kathalingam, V. Ganesh, M. Shkir and S. Faify, Appl. Phys. A: Mater. Sci. Process., 123, 801 (2017). https://doi.org/10.1007/s00339-017-1426-z
  11. M. Purica, E. Budianu, E. Rusu, M. Danila and R. Gavrila, Thin Solid Films, 403-404, 485 (2002). https://doi.org/10.1016/S0040-6090(01)01544-9
  12. Y. R. Ryu and S. Zhu, J. Appl. Phys., 88, 201 (2000). https://doi.org/10.1063/1.373643
  13. M. Krunks and E. Mellikov, Thin Solid Films, 270, 33 (1995). https://doi.org/10.1016/0040-6090(95)06893-7
  14. K. Ellmer, J. Phys. D: Appl. Phys., 33, R17 (2000). https://doi.org/10.1088/0022-3727/33/4/201
  15. Q. Li, L. Zhu, Y. Li, X. Zhang, W. Niu, Y. Guo and Z. Ye, J. Alloys Compd., 697, 156 (2017). https://doi.org/10.1016/j.jallcom.2016.10.307
  16. X. Meng, H. Zhang, X. Zhang, G. Zheng, X. Xie, B. Han, F. Yang, H. Pei and Y. Wang, Optik, 219, 165105 (2020). https://doi.org/10.1016/j.ijleo.2020.165105
  17. J. G. Lu and S. Fujita, J. Appl. Phys., 101, 083705 (2007). https://doi.org/10.1063/1.2721374
  18. J. Tauc, R. Grigorovici and A. Vancu, Phys. Status Solidi, 15, 627 (1966). https://doi.org/10.1002/pssb.19660150224
  19. T. T. A. Tuan, D.-H. Kuo, K. Lin and G.-Z. Li, Thin Solid Films, 589, 182 (2015). https://doi.org/10.1016/j.tsf.2015.05.018
  20. G. Haacke, J. Appl. Phys, 47, 4086 (1976). https://doi.org/10.1063/1.323240