DOI QR코드

DOI QR Code

Corrosion Fatigue Characteristics of SUS316L Steel with Ti Undercoat using Plasma Spray Method

플라즈마 스프레이방법을 이용하여 Ti 언더코트를 제작한 SUS316L강의 부식피로 특성

  • Han, Chang-Suk (Dept. of ICT Automotive Engineering, Hoseo University) ;
  • Kim, Woo-Suk (Dept. of ICT Automotive Engineering, Hoseo University)
  • 한창석 (호서대학교 자동차ICT공학과) ;
  • 김우석 (호서대학교 자동차ICT공학과)
  • Received : 2020.12.29
  • Accepted : 2021.03.12
  • Published : 2021.03.27

Abstract

In this study, using the plasma spray method, tensile and compression fatigue tests are performed in saline solution to examine the effect of Ti undercoat on corrosion fatigue behavior of alumina-coated specimens. The alumina-coated material using Ti in the undercoat shows better corrosion fatigue strength than the base material in the entire stress amplitude range. Fatigue cracking of UT specimens occurs in the recess formed by grit-blasting treatment and progresses toward the base metal. Subsequently, the undercoat is destroyed at a stage where the deformation of the undercoat cannot follow the crack opening displacement. The residual stress of the UT specimen has a tensile residual stress up to about 100 ㎛ below the surface of the base material; however, when the depth exceeds 100 ㎛, the residual stress becomes a compressive residual stress. In addition, the inside of the spray coating film is compressive residual stress, which contributes to improving the fatigue strength characteristics. A hardened layer due to grit-blasting treatment is formed near the surface of the UT specimen, contributing to the improvement of the fatigue strength characteristics. Since the natural potential of Ti spray coating film is slightly higher than that of the base material, it exhibits excellent corrosion resistance; however, when physiological saline intrudes, a galvanic battery is formed and the base material corrodes preferentially.

Keywords

References

  1. J. L. Peng, L. C. Duan, H. Shi and S. L. Xu, Key Eng. Mater., 487, 381 (2011). https://doi.org/10.4028/www.scientific.net/KEM.487.381
  2. H. Liang, B. Shi, A. Fairchild and T. Cale, Vacuum, 73, 317 (2004). https://doi.org/10.1016/j.vacuum.2003.12.160
  3. K. S. Katti, Colloids Surf., B, 39, 133 (2004). https://doi.org/10.1016/j.colsurfb.2003.12.002
  4. S. L. Evans and P. J. Gregson, Mater. Lett., 16, 270 (1993). https://doi.org/10.1016/0167-577X(93)90189-5
  5. C. Wang, C. Jiang, Y. Zhao, M. Chen and V. Ji, Appl. Surf. Sci., 420, 28 (2017). https://doi.org/10.1016/j.apsusc.2017.05.108
  6. P. S. Prevey, D. J. Hornbach and N. Jayaraman, Mater. Sci. Forum, 539/543, 3807 (2007). https://doi.org/10.4028/www.scientific.net/MSF.539-543.3807
  7. R. Kromer, S. Costil, J. Cormier, D. Courapied, L. Berthe, P. Peyre and M. Boustie, Surf. Coat. Technol., 278, 171 (2015). https://doi.org/10.1016/j.surfcoat.2015.07.022
  8. S. Deshpande, S. Sampath and H. Zhang, Surf. Coat. Technol., 200, 5395 (2006). https://doi.org/10.1016/j.surfcoat.2005.07.072
  9. H. K. Lee, J. Kor. Welding Soc., 20, 120 (2002). https://doi.org/10.2207/qjjws.20.120
  10. M. A. Rahmat, R. H. Oskouei, R. N. Ibrahim and R. K. Singh Raman, Inter. J. of Fatigue, 52, 30 (2013). https://doi.org/10.1016/j.ijfatigue.2013.02.007
  11. F. Oliveira, L. Hernadez, J. A. Berris, C. Villalobos, A. Pertuz and E. S. P. Cabrera, Surf. Coat. Technol., 140, 128 (2001). https://doi.org/10.1016/S0257-8972(01)01015-5
  12. D. Gallant, J. Adhes., 86, 165 (2010). https://doi.org/10.1080/00218460903418170
  13. S. K. Asl and M. H. Sohi, Surf. Interface Anal., 42, 551 (2010). https://doi.org/10.1002/sia.3184
  14. K. Murakami, T. Okamoto, H. Matsumoto, Y. Miyamoto and T. Irisawa, Mater. Sci. Eng. A, 160, 181 (1993). https://doi.org/10.1016/0921-5093(93)90446-L
  15. K. Poorna Chander, M. Vashista, K. Sabiruddin, S. Paul and P. P. Bandyopadhyay, Mater. Des., 30, 2895 (2009). https://doi.org/10.1016/j.matdes.2009.01.014
  16. T. W. Clyne and S. G. Gill, J. Therm. Spray Technol., 5, 401 (1996). https://doi.org/10.1007/BF02645271
  17. M. Multigner, S. Ferreira-Barragans, E. Frutos, M. Jaafar, J. Ibanez, P. Marin, M. T. Perez-Prado, G. Gonzalez-Doncel, A. Asenjo and J. L. Gonzalez-Carrasco, Surf. Coat. Technol., 205, 1830 (2010). https://doi.org/10.1016/j.surfcoat.2010.07.126
  18. B. Rajasekaran, S. G. S. Raman, S. V. Joshi and G. Sundararajan, Surf. Coat. Technol., 201, 1548 (2006). https://doi.org/10.1016/j.surfcoat.2006.02.023
  19. G. Lojen, I. Anzel, A. Kneissl, A. Krizman, E. Unterweger, B. Kosec and M. Bizjak, J. Mater. Process. Technol., 162/163, 220 (2005). https://doi.org/10.1016/j.jmatprotec.2005.02.196
  20. Y. Liu, Y. Jiang, Z. G. Huang and Z. Z. Wan, Adv. Mater. Res., 538/541, 2364 (2012). https://doi.org/10.4028/www.scientific.net/AMR.538-541.2364
  21. D. L. Anton and M. E. Fine, Mater. Sci. Eng., 58, 135 (1983). https://doi.org/10.1016/0025-5416(83)90145-3
  22. P. S. Prevey, D. J. Hornbach and N. Jayaraman, Mater. Sci. Forum, 539/543, 3807 (2007). https://doi.org/10.4028/www.scientific.net/MSF.539-543.3807