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SOME NEW APPLICATIONS OF S-METRIC SPACES BY
WEAKLY COMPATIBLE PAIRS WITH A LIMIT PROPERTY

J. MOJARADI AFRA? AND M. SABBAGHAN P *

ABSTRACT. In this note we use a generalization of coincidence point(a property
which was defined by [1] in symmetric spaces) to prove common fixed point theorem
on S-metric spaces for weakly compatible maps. Also the results are used to achieve
the solution of an integral equation and the bounded solution of a functional equation
in dynamic programming.

1. INTRODUCTION

Fixed point theorems play a principal role in solving integral equations [2, 3]
arising in several areas of mathematics and other related subjects. In 1992, Dhage
[4] offered the concept of a D-metric space. Later on, in 2006, Mustafa and Sims
[8] showed that most of the results concerning Dhage’s D-metric space are invalid.
Therefore, they introduced a new notion of a generalized metric space, called G-
metric space. Recently, Sedghi et al. [10] introduced the concept of S-metric space
and some of their properties. In this note, we use a geralization of coincidence
point on S-metric spaces to find a procedure to prove some type of fixed point
theorems and applying its consequences to get a solution for an integral equation

and a functional equation in dynamic programming.

2. Basic CONCEPTS

First we recall some notions, lemmas and examples which will be useful later (see
[10]):
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Definition 2.1. Let X be a nonempty set. An S-metric on X is a function S :
X3 — [0, 00) which satisfies the following conditions for all z,y, z,a € X

(i) S(z,y,2) > 0,

(ii) S(z,y,2) =0if and only if x = y = 2,

(iii) S(z,y,2) < S(z,z,a) + S(y,y,a) + S(z, z,a).

The set X with an S-metric is called an S-metric space.

The standard examples of S-metric spaces are:

(a) Let X be any normed space, then S(z,y,2) =|| y+2z—2z || + || y— 2z || is an
S-metric on X.

(b) Let (X,d) be a metric space, then Sy(x,y, z) = d(z, z) + d(y, z) is an S-metric
on X. This S-metric is called the usual S-metric on X.

(c) Another S-metric on (X,d) is S(z,y,2) = d(z,y) + d(z, z) + d(y, z) which is
symmetric with respect to the argument.

(d) Let X =[0,4+00), then

St~ |

is an S-metric. This S-metric can not be defined by a usual S-metric. We call S

0 fe=y=2z
max{z,y,z} otherwise,

the maximum S-metric on X.

In this note, we will often use the following important facts.

Lemma 2.1 ([10]). In any S-metric space (X,S), we have S(z,z,y) = S(y,y,x)
forallx,y € X.

Definition 2.2. A sequence {z,} in X converges to x if S(xy,, zn,z) — 0 asn — oco.

We denote this by lim,, ,oo x, = x .

Definition 2.3. A sequence {x,} in an S-metric space (X,S5) is called a Cauchy

sequence if S(xp, Tpn,Tm) — 0 as n,m — co.

Lemma 2.2 ([10]). Let (X,S) be an S-metric space then,

a. The limit of a sequence in an S-metric space is unique.

b. Every convergent sequence in an S-metric space is a Cauchy sequence.

c. If there exist sequences {x,,} and {yn} such that lim, oo Ty, = T and limy,_,oc Yn =

y, then limy, 00 S(Zn, Tn,yn) = S(z,x,y).

There exists a natural topology on an S-metric spaces. First, let us define the notion
of (open) ball.
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Definition 2.4. Let (X,S) be an S-metric space. For r > 0 and = € X we define

a ball with center x and radius r as follows:
Bs(z,r) ={y e X : S(y,y,x) < r}.
This is a quite different concept of a ball in a usual metric space. We have:
Example 2.1. Let Sy(z,y,z) = d(z,z) + d(y, z) be the usual S-metric on (X,d)
and let g € X. Then:
Bg(x0,2) ={y € X : S(y,y,m0) <2} ={y € X : 2d(y,xz0) < 2}
={y € X : d(y,z0) <1} = Ba(o,1).

By using this notion of a ball, we can introduce the standard topology on S-metric

space.

Definition 2.5. The S-metric space (X, .5) is said to be complete if every Cauchy

sequence converges.
We have the following result:
Lemma 2.3 ([7]). Any S-metric space is Hausdorff.

Remark 2.1. We have:
zn — xin (X, d) if and only if d(x,,, ) — 0, if and only if Sy(xy, p, x) = 2d(Tn, z) —
0, that is, x,, — x in (X, Sy).

Definition 2.6 ([10]). Let (X,S) be an S-metric space. A self-map 7': X — X is

called a contraction map if there exists a constant 0 < k < 1 such that

STz, Tz, Ty) < kS(x,z,y), forall z,ye X.

Theorem 2.1 ([10]). Let (X, S) be a complete S-metric space and T : X — X be a

contraction map. Then, F has a unique fized point.

Definition 2.7 ([1]). Let L and T be two self-maps on a S-metric space (X,.S5).
Then, the pair (L,T) is said to be weakly compatible if they commute at their

coincidence points, that is, if Lu = Tu for some v € X, then T Lu = LTu.

Definition 2.8 ([5]). Let L and T be two self-maps on an S-metric space (X, S).
We say the pair (L,T") generalize the coincidence point if there exists a sequence
{zy} in X such that lim, . Lz, = lim, 4o Tx, = t, for some t € X. We call it
Limit Property. We were mentioned that, this property had called by [1] (E.A.).
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The following examples are from [5]:

Example 2.2. Let X = [2,+00). Define L,T : X — X by L(z) = 2z + 1 and
T(z) = x+ 1 for all z € X. Suppose that the property F.A. holds. Then there
exists a sequence {x,} in X such that lim, o Lz, = lim,— 4o T, =t for some
t € X. It follows that lim, 400, = % and lim, 4oz, = t — 1 and so, by
uniqueness of limit, ¢t = 1 but ¢ ¢ X. Therefore, L and T do not satisfy the Limit

Property.

Example 2.3. Let X = [0,+00). Define L,7: X — X by L(z) = 2z and T'(z) = £
for all z € X. Consider the sequence z,, = {%}nGN in X. Clearly, lim,,—, 4o Lz, =

lim, 400 Ty =0€ X | so L and T satisfy the Limit Property.

Let the nondecreasing function ¢ : [0, +00) — [0, +00) satisfies following properties
(see [6]):

(M1)  lim, 400 ¢"(t) = 0, for all ¢ € (0, +00),

(M2) ¢(t) <tforall te(0,+00),

(M3) ¢(0)=0.

The set of all functions such as ¢ is denoted by ®.

3. MAIN RESULTS

The following theorem is our main result :

Theorem 3.1. Let (X,S) be an S-metric space and A,B,H,T : X — X be four
self-mappings such that:

(a) S(Ax, Az, By) < ¢(maz{S(Hx,Hz,Ty),S(Hz, Hz, By),S(Ty,Ty, By)}), for
allz,y € X and ¢ € P,

(b) B(X) C H(X) and A(X) C T(X),

(c) (A,H) or (B,T) satisfies the Limit Property,

(d) A(X),B(X),H(X) or T(X) is a closed subset of X.

Then (A, H) and (B,T) have a coincidence point. Further, if (A, H) and (B,T) are
weakly compatible, then A, B, H and T have a unique common fixed point in X .

Proof. Suppose (B,T) satisfies the Limit Property. Then there exists a sequence
{zy} in X such that lim, - Bx, = lim,_ o Tz, = t, for some ¢t € X. Since
B(X) C H(X), there exists a sequence {y,} in X such that Bz, = Hy,. Hence
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limy,— 400 Hyn, = t. We will show that lim,,— 10 Ay, = t. We have:

S(Aym Aym an)
< ¢<maX{S(Hyn7 Huyp, Txn)7 S(Hyna Hyp, an)a S(T:Un, Ty, an)}),

S0,
max{S(Hyn, Hyn, Txyn), S(HYn, Hyn, Bxy), S(Txy, Txy, Bxy)}
S(Hyn, Hyn, Txy,) or
=< S(Hyn, Hyn, Bx,) or
S(Txp, Tzy, Bxy).
Hence,

S(Aynv Aynv an)
< ¢(maX{S(Hynv Hym T.%'n), S(Hyna Hym an); S(Twna Txy, an)})

o(S(Hyn, Hyn, Txy)) or
=< &(S(Hyn, Hypn, Bzy)) or
o(S(Txp, Ty, Bxy)).

Assume that S(Ayy, Ayn, Bry) < lim,yoo S(Hypn, Hyn, Txy,). Since ¢(t) < t for
all ¢ € [0,00), then, by taking limit we have:
lim S(Ayn, Ayn, Bx,) < lim S(Hyn, Hyp, Tzy),
n—-+00 n—+00
by Lemma 2.2, limy,—s oo S(HYn, Hyn, Txy) = S(t,t,t) = 0, that is,
lim S(Ayy, Ayn, Bx,) = 0.

The above equality holds similarly for other cases.

By Definition 2.1(iii) and Lemma 2.1, we have:

S(Aym Ayna t) < 2S(Aym Ayn’ an) + S(t, t, BJUn)
= 2S(Ayn, Ayn, Bzxy,) + S(Bxy, Brp,t).

Now by taking limit and using third part of Lemma 2.2 we have, lim S(Ay,,, Ayn,t) =
0, hence by Definition 2.2, lim,,_, 1 o, Ay, = t. That is,

limy, 400 Ayy = limy, 4 o Bxy, = limy,_ 100 Hyy = limy, oo T, = t.

Suppose that H(X) is a closed subset of X, then, ¢t = Hu for some u € X. We show
that Au = Hu = t. From (a), we have:

S(Au, Au, Bxy,) < ¢p(max{S(Hu, Hu,Tzy,), S(Hu, Hu, Bzxy,), S(Txy, Txy, Bxy)}).
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Without loss of generality, assume that
¢(max{S(Hu, Hu,Tzy), S(Hu, Hu, Bxy,), S(Txy, Txy, Bxy)}) < ¢(S(Hu, Hu, Txy,)),
then,
S(Au, Au, Bxy,) < ¢p(max{S(Hu, Hu,Tzy), S(Hu, Hu, Bxy,), S(Txy, Txy, Bxy)})

< ¢(S(Hu, Hu, Tzy))

< S(Hu,Hu,Tx,),
by taking limit, we have:

lim S(Au, Au,Bzy,) < lim S(Hu,Hu,Tx,)

n—-+0o n—-+00

Lemma?2.1

lim STz, Tz, Hu)

n—-+o0o

—— lim S(Txn,Txp,t)
n—-+4o0o

Lemma?2.4

lim S(t,t,t) =0,

n—-+o00

Hence, lim,,—, o S(Au, Au, Bx,) = 0. Now, observe that

S(Au, Au,t) < S(Au, Au, Bxy,) + S(Au, Au, Bxy,) + S(t, t, Bxy,)
= 25(Au, Au, Bx,,) + S(Bxy, By, t),

by taking limit and the fact that lim, oo S(Bxy, Bxy,t) = S(t,t,t) = 0, we have,
S(Au, Au,t) = 0, therefore Au = t.

Hence, u is a coincidence point of the pair (A, H). Since A(X) C T'(X), there
exists v € X such that Au = Tv. We claim that Tv = Bv. Suppose that Tv # B,
by hypothesis (a) and by (M2), we have:

S(Au, Au, Bv) < ¢(max{S(Hu, Hu,Tv),S(Hu, Hu, Bv), S(Tv,Tv, Bv)})
= ¢(max{0, S(Au, Au, Bv), S(Au, Au, Bv)})
= ¢(S(Au, Au, Bv))
< S(Au, Au, Bv).
This is a contradiction. Hence Au = Bv and Tv = Bv. So (B, T) has a coincidence
point. Therefore, we have Bv = Tv = Hu = Au.
Now, if B and T are weakly compatible, then we have BTv = TBv =TTv = BBv

and the weak compatibility of A and H implies that AHu = H Au. Hence, AAu =
AHu = HAu = HHu. We show that Au is a common fixed point of A, B, H and
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T. Suppose that AAu # Au. By hypothesis (a) and by (M2), we have:

S(AAu, AAu, Au) = S(AAu, AAu, Bv)

< ¢(max{S(HAu, HAu,Tv), S(H Au, H Au, Bv), S(Tv, Tv, Bv)})
= ¢(max{S(AAu, AAu, Bv), S(AAu, AAu, Bv), S(Bv, Bv, Bv)}
= ¢(max{S(AAu, AAu, Bv), S(AAu, AAu, Bv),0}

= ¢(S(AAu, AAu, Bv))

S(

< S(AAu, AAu, Bv).

This is a contradiction. Hence, Au = AAu = Bv. Therefore, Au = AAu = HAu is
a common fixed point of A and H. By a similar argument, Bv is a common fixed
point of B and 1. Since Au = Bwv, we deduce that Au is a common fixed point
of A, B,H and T. Only uniqueness of common fixed point has remained. Suppose
that w and z are two different common fixed points of A, B, H and T, then, by
hypothesis (a) and by (M2), we have:

S(w,w, z) = S(Aw, Aw, Bz)

< ¢p(max{S(Hw, Hw,Tz), S(Hw, Hw, Bz),S(Tz,Tz,Bz)})
= ¢(max{S(w,w, z), S(w,w, 2),5(z,2,2)})
&(
S(

S(w,w, z))

’U),Z,Z),

which is a contradiction. Hence, w = z. Therefore, A, B, H and T have a unique

common fixed point. O

By taking H = T in Theorem 3.1, the results for three self-mappings A, B and T
are satisfied. We have the following corollary:

Corollary 3.1. Let (X, S) be an S-metric space and A, B, H : X — X be three self
mappings such that:

(a) S(Ax, Az, By) < ¢(max{S(Hz,Hz, Hy),S(Hz, Hz, By),S(Hy, Hy, By)}), where
e, forallx,ye X.

(b) A(X) C H(X) and B(X) C H(X),

(c) (A,H) or (B, H) satisfies the Limit Property,

(d) A(X),B(X) or H(X) is a closed subset of X.

Then the pairs (A, H) and (B, H) have a coincidence point. Further, if (A, H) and



8 J. MOJARADI AFRA & M. SABBAGHAN

(B, H) are weakly compatible, then A, B and H have a unique common fixed point
mn X.

Example 3.1. Equip X = [1,+o0] with the maximum S-metric. Define A, B, H :
X 5 XbyAr =2, Br =2z — 1 and Hr = 2% for all z € X and ¢ : [0, +00) —
[0,4+00) by ¢(t) =t for all ¢ > 0. The pair (A, H) satisfies the Limit Property. Also,
the hypotheses (b) and (d) of Corollary 3.1 hold trivially. We have:

0 ifx=2y—1,
S(Az,Az,By) =< 2y—1 ifz<2y—1,
r if 2y — 1 < x.

y? ifx <y,

S(Hzx,Hz,Hy) = { 2% ify<u,

0 ifz=y.

22 if 2y — 1 < 22,
S(Hzx,Hz,By) =4 2y—1 if2? <2y—1,
0 ifa?=2y—1.

0 ify=1,

Soforxz <2y—1,z<vy, 22 <2y—1,y# 1, we have:
2y — 1 < max{y? 2y — 1} = 3>
Forx <2y—1,2<y,2y—1<2?andy# 1, we have:
2y — 1 < max{y?, 22} = 4>
Fory <x,2y—1<z, y# 1, we have:
r < max{z?,y?} = 22
So, the inequality (a) in Corollary 3.1 is correct(other cases are trivial). Hence, the
pairs (B, H) and (A, H) have a coincidence point. In addition, since (B, H) and
(A, H) are weakly compatible, so A, B and H have the unique common fixed point
1.

The major result of this paper is finding a solution for the following integral equation
by applying Corollary 3.1.

Let X = [0,1] and C(X) be the space of all the real valued continuous functions
defined on X. Also, suppose that the S-metric on this space is as follows:

S(x,y,z) = sup |2(t) — 2(t)| + sup [y(t) — 2(t)], for all z,y,z € C(X).
teX teX
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Clearly (C(X),S) is a complete S-metric space.
Let p: X xR —> Rand ¢: X x X xR — R be two continuous functions and consider
the following integral equation:

(1) p(t,z(t)) = /Xq(t,r,m(r))dr, z € C(X).

We have the following theorem:

Theorem 3.2. Suppose T : X x R — [0,4+00) is a function such that:
(a) T(t,v(t)) < [y q(t,r,u(r))dr < p(t,v(t)) forall rtelX,

(b) p(t,v(t)) —T(t,v(t)) < klp(t,v(t)) — v(t)|, where k € (0,1).

Then the integral equation (1) has a solution in C(X).

Proof. Define (Az)(t) = [y q(t,r,x(r))dr and (Bz)(t) = p(t, z(t)). Now we have:

S(Az, Az, By) = Qg? |(Az)(t) — (By)(t)]

= 2sup p(t,y(0) ~ [ alt.ra(o)it

< 2sup Ip(t y(t) — T(t,y(t))|

<2k Sup Ip(t, y(t)) — y(t)| = kS(y,y, By).
€

We put H =idc(xy and ¢(I) = kl for all | > 0 and k € (0, 1), so we have:

S(Az, Az, By) < kS(y,y, By) = ¢(S(y,y, By)) <
¢(max{S(x,z,y),S(z,z,By),S(y,y, By)}),

hence, hypothesis (a) of Corollary 3.1 is satisfied.
To prove the Limit Property, let {z,} be a sequence in X such that lim,,_,~ Az, =
t, assume y, = Ax,. We show that for every n € N, By, = y,. Hence we have

limy, 400 Yn =t = limy, s 4 o0 By,. We have:
= S(Yn, Yns BYn) < kS(Yn: Yn, BYn)
= kS(ynayna Byn) = 0.
Then, y, = By, for every n € N.
Also, since H(X) = X, both hypotheses (b) and (d) are satisfied. Obviously,

(A,ido(x)) and (B, idc(x)) are weakly compatible, hence there is a unique solu-
tion of integral equation (1) in C(X). O
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The problem of dynamic programming related to a multistage process reduces to the
subject of solving functional equations. In this part, we want to solve the following
functional equation (2) by Corollary 3.1. Suppose that U and V are Banach spaces,
W C U is a state space, which is the set of the initial state, actions and transition
model of the process and D C V is a decision space, which is the set of possible

actions that are allowed for the process, we set:

Q:W-—-R

(2) Q(z) = Sgg{f(w,y) + K(z,y,Q(7(x,9))}, €W,

where 7: WxD =W, f:WxD—R,K:WxDxR— R. Let B(W) denote the
space of all bounded real-valued functions on W. We equip B(W) with the following
S-metric, which is obviously a complete S-metric space,
S(h,k,p) = sup |h(z) — p(z)| + sup |k(z) — p(x)| forall h k,pe BW).
xeW zeW

Now, we state the main result of this part.

Theorem 3.3. Let f: W xD — Rand K : W x D xR — R be two bounded
functions and also 7 : W x D — W be a function. Let A : B(W) — B(W) be
defined by

(A(h))(x) = sup{f(z,y) + K(z,y, (h)(T(z,9)))},

yeD
for all h € B(W) and = € W. Suppose that the following condition holds:
1
(3) K (2, y, h(7(2,9))) — K(z,y, k(7(z,9)))| < 5¢(|h(z) = k(z)]),

where z € W, y € D and ¢ € ®. Then the functional equation (2) has a unique

bounded solution.

Proof. We like to remind that (B(W), S) is a complete S-metric space. Let € be an
arbitrary positive number, x € W and hy, he € B(W), then there exist y1,y2 € D
such that

) (A(R))(&) < F,p) + K @,y (7, m) + 5.
(5) (Ah2)) (@) < f(w.y2) + K (292 ha(r(2,92))) + 5.
(6) (A(0))(&) = F(,9) + K (@,y2, I (7w, 02).
(") (Ah2))(@) 2 F(,m0) + K (@, g1, ha(7(,91).



SOME NEW APPLICATIONS OF S-METRIC SPACES 11

Then by (4), (7) and (3) we have: (inequalities (6),(7) are true for all y1,y2 € D),

(A(hl))(x) - (A(h2))(x) < K(xvyla hl(T(x7y1))) - K(wvylv hQ(T(xvyl))) + %

< ’K($7y17h1(7—(l‘7y1))) - K(‘T’ylah?(T(xayl)))’ + %

< S @(1h1 (@)~ ha(@)]) + ).
Therefore we get:
(8) (A(h1)) () = (A(h2))(x) < %(@f)(\hl(ﬂﬁ) — ha(2)]) + €).
Similarly, by (5) , (6) and (3), we obtain:
(9) (A(h2)) () = (A(h1))(z) < %(@5(\’11(96) — ha(2)]) + €).
Therefore, by(8) and (9), we have:
(10) 2[(A(h)) (@) — (Ah2))(2)| < ¢(lhi(2) = ha(z)]) + €.

which implies
(11)  S((A(h1))(2), (A(h1))(), (A(h2))(@)) < &(S(hi(x), ha (), ha(z))) + €.
Since € > 0 is arbitrary, we can deduce that

S((A(h1))(2)), (A(h)) (@), (A(h2))(2))) < ¢(S(ha (@), h(z), ha(2))).

Thus, all the hypothesis of Corollary 3.1 are satisfied with A = B and H = idpw),
the identity map on B(W). Therefore, functional equation (2) has a unique bounded

solution. O

Example 3.2. Let consider the following functional equation

(12) (A(h))(z) = sup { arctan(z + 3|y|) + %ln (1+z+ + |h(z)]) }

y€D 1+ ‘y|

for z € [0, 1], where W = [0,1], D = R. Then,
f:[0,1] x R — R is defined by f(z,y) = arctan(x + 3|y|),
7:[0,1] x R — [0, 1] is defined by 7(z,y) = =, and
K :[0,1] x R x R — R is defined by K (2,y,t) = § In(1 +z + o + [¢]).

It’s clear that |f(z,y)| < I and |K(z,y,0)| = [3In(l + 2z + ﬁ‘y')‘ < In3 for all
z €[0,1] and all y € R.

Hence the first assumption of Theorem 3.3 is satisfied. Furthermore, consider the
continuous function ¢(h) = In(1+ h) for all h € [0, 00]. Therefore, for all z € [0, 1]
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and all y,k € R (we can assume that |h| > |k| without loss of generality), it follows
that:

| K (2, y, h(x)) - K(l’ y, k(z))|

1 1 1
:21 (1+:c+ | ‘+\h(:c)y) (1+x+1+‘y|+|k(aﬁ)\)’
1 n1+x+1+|y+\h(x)\‘

"2 1+x+ﬁ|+|k(:c)|

1, T g+ )+ () - \k(x))\

2 L+ a + oy + [k(2))]

1 (g (RG] = k@)

=3)! (1+1+x+1+1|y|+|k:(x)|)‘

<3|+ ()| - )
=5 In(1+ (Ih(@)| ~ k()] = 5 In(1+ [[1(@)] ~ k()]
1

2
Then inequality (3) in theorem (3.3) also holds where x € [0,1], y € Rand ¢ € ®,

which implies functional equation (12) has a unique bounded solution h € B|0, 1].

<5 (1 +[h(x)  k(@)]) = 5o(Ih(x) — k()]
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