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EVALUATIONS OF THE CUBIC CONTINUED FRACTION

BY SOME THETA FUNCTION IDENTITIES: REVISITED

Dae Hyun Paek

Abstract. In this paper, we exploit some known theta function identities involving
two parameters lk,n and l′k,n for the theta function ψ to find about 54 new values
of the Ramanujan’s cubic continued fraction.

1. Introduction

Ramanujan’s cubic continued fraction G(q), for |q| < 1, is defined by

G(q) =
q1/3

1 +

q + q2

1 +

q2 + q4

1 +

q3 + q6

1 + · · · .

As stated in [8], there has been interest by number theorists in evaluating explicit

values of G(e−π
√
n) and G(−e−π

√
n) for some positive rational numbers n. For

brevity, we write qn for e−π
√
n throughout this paper. In 1984, Ramanathan [10]

found the value of G(q10) such as G(q10) =

√
9+3

√
6−
√

7+3
√
6

(1+
√
5 )
√√

5+
√
6

by using Kronecker’s

limit formula. Andrews and Berndt [3] also found the value of G(q10) by employing

Ramanujan’s class invariants. In 1995, Berndt, Chan, and Zhang [5] evaluated G(qn)

for n = 2, 10, 22, 58 and G(−qn) for n = 1, 5, 13, 37 by using Ramanujan’s class

invariants. In addition, Chan [6] found explicit values of G(qn) for n = 2
9 , 1, 2, 4 and

G(−qn) for n = 1, 5 by applying some reciprocity theorems for the cubic continued

fraction.

In the 2000s, Adiga, Vasuki, and Mahadeva Naika [2] evaluated G(q4) and G(−qn)
for n = 1

3 ,
25
3 ,

49
3 ,

1
75 ,

1
147 by using some modular equations. Moreover, Adiga, Kim,

Mahadeva Naika, and Madhusudhan [1] found explicit values of G(−qn) for n = 1
3 ,
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1
5 ,

1
9 ,

1
27 , 1, 3, 5. Meanwhile, Yi [11] systematically found values of G(qn) for n = 1

2 ,
1
3 ,

4
3 ,

1
4 ,

1
9 ,

4
9 , 3, 6, 7, 8, 10, 12, 16, 28 and G(−qn) for n = 1

2 ,
1
3 ,

1
4 ,

1
9 , 2, 3, 4, 7 by

using modular equations, in particular some eta function identities.

In the 2010s, Yi et al. [12] evaluated G(qn) for n = 1
3 , 1, 4, 9 and G(−qn) for

n = 4, 9 by employing modular equations of degrees 3 or 9. In addition, Paek and Yi

[7] derived some algorithms based on modular equations of degrees 3 or 9 to evaluate

G(qn) for n = 4
3 ,

16
3 ,

64
3 , 36, 81, 144, 324 and G(−qn) for n = 4

3 ,
16
3 , 36, 81. Paek and

Yi [8] showed how to evaluate G(qn) and G(−qn) for n = 4m, 1
4m , 2 · 4m and 1

2·4m

with some nonnegative integer m. In particular, they evaluated G(qn) for n = 1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
32 ,

1
128 , 1, 8, 16, 32, 64, 128, 256 and G(−qn) for n = 1

4 ,
1
8 ,

1
16 ,

1
32 ,

1
128 , 8, 16,

32, 64 by constructing some algorithms based on modular equations of degrees 3 or

9. Moreover, Paek and Yi [9] derived some algorithms based on modular equations

of degrees 3 or 9 to evaluate G(qn) and G(−qn) for n = 2·4m
3 , 1

3·4m , and 2
3·4m with

m = 1, 2, 3, and 4. In other words, they gave specific values of G(qn) for n = 8
3 ,

32
3 ,

128
3 , 1

6 ,
1
8 ,

1
12 ,

1
24 ,

1
48 ,

1
96 ,

1
192 ,

1
384 and G(−qn) for n = 8

3 ,
32
3 ,

1
12 ,

1
24 ,

1
48 ,

1
96 ,

1
192 ,

1
384 .

Table 1

G(qn) G(−qn)
Ramanathan [10] 10

Berndt et al. [5] 2, 10, 22, 58 1, 5, 13, 37

Chan [6] 2
9 , 1, 2, 4 1, 5

Yi [11] 1
2 ,

1
3 ,

4
3 ,

1
4 ,

1
9 ,

4
9 ,

1
2 ,

1
3 ,

1
4 ,

1
9 , 2, 3, 4, 7

3, 6, 7, 8, 10, 12, 16, 28

Adiga et al. [2] 4 1
3 ,

25
3 ,

49
3 ,

1
75 ,

1
147

Adiga et al. [1] 1
3 ,

1
5 ,

1
9 ,

1
27 , 1, 3, 5

Yi et al. [12] 1
3 , 1, 4, 9 4, 9

Paek and Yi [7] 4
3 ,

16
3 ,

64
3 , 36, 81, 144, 324

4
3 ,

16
3 , 36, 81

Paek and Yi [8] 1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
32 ,

1
128 ,

1
4 ,

1
8 ,

1
16 ,

1
32 ,

1
128

1, 8, 16, 32, 64, 128, 256 8, 16, 32, 64

Paek and Yi [9] 8
3 ,

32
3 ,

128
3 , 1

6 ,
1
8 ,

1
12 ,

1
24 ,

8
3 ,

32
3 ,

1
12 ,

1
24 ,

1
48 ,

1
96

1
48 ,

1
96 ,

1
192 ,

1
384

1
192 ,

1
384

Yi and Paek [14] 1
5 ,

4
5 ,

9
5 ,

16
5 ,

36
5 ,

144
5 , 5

9 ,
20
9 ,

4
5 ,

9
5 ,

36
5 ,

5
9 ,

20
9 ,

1
45 ,

4
45 ,

80
9 ,

1
27 ,

4
27 ,

16
27 ,

1
45 ,

4
45 ,

16
45 , 20, 27, 45, 180

5, 20, 27, 45, 48, 80, 108,

180, 432, 720
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More recently, Yi and Paek [14] used some theta function identities involving

parameters hn,k and h′n,k for the theta function φ to establish evaluations of G(qn)

for n = 1
5 ,

4
5 ,

9
5 ,

16
5 ,

36
5 ,

144
5 , 5

9 ,
20
9 ,

80
9 ,

1
27 ,

4
27 ,

16
27 ,

1
45 ,

4
45 ,

16
45 , 5, 20, 27, 45, 48, 80, 108,

180, 432, 720 and G(−qn) for n = 4
5 ,

9
5 ,

36
5 ,

5
9 ,

20
9 ,

1
45 ,

4
45 , 20, 27, 45, 180. Table 1

shows a summary of some known values of n for G(qn) and G(−qn) in chronological

order.

Thus G(qn) were evaluated for n = 1
2 ,

1
3 ,

4
3 ,

8
3 ,

16
3 ,

32
3 ,

64
3 ,

128
3 , 1

4 ,
1
5 ,

4
5 ,

9
5 ,

16
5 ,

36
5 ,

144
5 , 1

6 ,
1
8 ,

1
9 ,

2
9 ,

4
9 ,

5
9 ,

20
9 ,

80
9 ,

1
12 ,

1
16 ,

1
24 ,

1
27 ,

4
27 ,

16
27 ,

1
32 ,

1
45 ,

4
45 ,

16
45 ,

1
48 ,

1
96 ,

1
128 ,

1
192 ,

1
384 , 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 20, 22, 27, 28, 32, 36, 45, 48, 58, 64, 80, 81,

108, 128, 144, 180, 256, 324, 432, 720.

Whereas G(−qn) were evaluated for n = 1
2 ,

1
3 ,

4
3 ,

8
3 ,

16
3 ,

25
3 ,

32
3 ,

49
3 ,

1
4 ,

1
5 ,

4
5 ,

9
5 ,

36
5 ,

1
8 ,

1
9 ,

5
9 ,

20
9 ,

1
12 ,

1
16 ,

1
24 ,

1
27 ,

1
32 ,

1
45 ,

4
45 ,

1
48 ,

1
75 ,

1
96 ,

1
128 ,

1
147 ,

1
192 ,

1
384 , 1, 2, 3, 4, 5, 7,

8, 9, 13, 16, 20, 27, 32, 36, 37, 45, 64, 81, 180.

In this paper, we use some theta function identities involving parameters lk,n and

l′k,n for the theta function ψ to establish about 54 new values of G(qn) and G(−qn)
such as G(−q6), G(−q 1

6
), and G(qn) and G(−qn) for n = 3

2 ,
2
3 ,

5
3 ,

20
3 ,

15
4 ,

3
5 ,

12
5 ,

3
8

5
12 ,

1
15 ,

4
15 ,

3
20 ,

2
27 ,

5
27 ,

8
27 ,

20
27 ,

1
54 ,

1
60 ,

5
108 ,

1
135 ,

4
135 ,

1
216 ,

1
540 , 15, 24, and 60.

Ramanujan’s theta function ψ(q), for |q| < 1, is defined by

ψ(q) =
∞∑
n=0

qn(n+1)/2.

For any positive real numbers k and n, define lk,n and l′k,n by

lk,n =
ψ(−q)

k1/4ψ(−qk)
and l′k,n =

ψ(q)

k1/4ψ(qk)
,

where q = e−π
√
n/k (See [13] for details). We now note that the following property

of lk,n in [13] will be useful for evaluating the cubic continued fraction later on.

(1.1) lk, 1
n
= l−1

k,n .

We also note general formulas for G3(qn
3
) and G3(−qn

3
) in terms of l′3,n and l3,n,

respectively, in [13, Theorem 6.2(ii) and (v)] such as

(1.2) G3(qn
3
) =

1

3 l′43,n − 1

and

(1.3) G3(−qn
3
) =

−1

3 l43,n + 1
.
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By taking cube root of (1.2) and (1.3), we have the values of G(qn
3
) and G(−qn

3
).

Hence, in view of (1.2) and (1.3), in order to find some explicit values of G3(qn
3
) and

G3(−qn
3
), it is sufficient to evaluate l′3,n and l3,n, respectively. For brevity, we write

ln, l
′
n for l3,n, l

′
3,n, respectively.

2. Evaluations of ln and l′n

We begin this section by recalling the values of l2 and l5 in [13], which play key

roles in evaluating some new values of ln.

Lemma 2.1 ([13, Theorem 4.9(iv) and (v)]). We have

(i) l2 = (
√
2 +

√
3 )1/4,

(ii) l5 =

(
1 +

√
5

2

)3/2

.

Note that l5 in Lemma 2.1(ii) was incorrectly recorded as

(
1 +

√
5

2

)2/3

in [13].

We now recall a theta function identity in [4, Entry 1(ii), p. 345] such as

(2.1)

(
1 +

ψ(−q1/3)
q1/3ψ(−q3)

)3

= 1 +
ψ4(−q)
qψ4(−q3)

.

Rewriting (2.1) in terms of ln and l9n, we have the next result.

Lemma 2.2 ([13, Theorem 4.5(i)]). For any positive real number n, we have

(2.2) (1 +
√
3 lnl9n)

3 = 1 + 3 l49n.

We first evaluate ln for n = 1
2 ,

9
2 ,

2
9 ,

1
18 , and 18.

Theorem 2.3. We have

(i) l 1
2
= (

√
3−

√
2 )1/4,

(ii) l 2
9
=

3
√
1 + 3

√
2 + 3

√
3 − 1√

3 (
√
2 +

√
3 )1/4

,

(iii) l 1
18

=
3
√

1− 3
√
2 + 3

√
3 − 1√

3 (
√
3−

√
2 )1/4

,

(iv) l 9
2
=

√
3 (

√
2 +

√
3 )1/4

3
√
1 + 3

√
2 + 3

√
3 − 1

,

(v) l18 =

√
3 (

√
3−

√
2 )1/4

3
√
1− 3

√
2 + 3

√
3 − 1

.
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Proof. Part (i) is clear by (1.1) and Lemma 2.1(i). For (ii), let n = 2
9 in (2.2) and

put l2 = (
√
2 +

√
3 )1/4 in Lemma 2.1(i), then we find that(
1 +

√
3 (

√
2 +

√
3 )1/4 l 2

9

)3
= 1 + 3(

√
2 +

√
3 ).

Taking the cube root of both sides of the last equation and simplifying to complete

the proof.

For (iii), let n = 1
18 in (2.2), put the value of l 1

2
obtained from (i), and repeat the

same argument as in the proof of (ii) to complete the proof. The proofs of (iv) and

(v) follow directly from (1.1). �

We next evaluate ln for n = 1
5 ,

9
5 ,

5
9 ,

1
45 , and 45.

Theorem 2.4. We have

(i) l 1
5
=
√√

5 − 2 ,

(ii) l 5
9
=

3
√
28 + 12

√
5 − 1√

6 + 3
√
5

,

(iii) l 1
45

=
3
√

28− 12
√
5 − 1√

−6 + 3
√
5

,

(iv) l 9
5
=

√
6 + 3

√
5

3
√
28 + 12

√
5 − 1

,

(v) l45 =

√
−6 + 3

√
5

3
√
28− 12

√
5 − 1

.

Proof. Repeat the same argument as in the proof of Theorem 2.3. �

We now turn to evaluations of l′n. But we need the following theta function

identity with respect to ln and l′n.

Lemma 2.5 ([12, Corollary 3.12]). For every positive real number n, we have

(2.3) (l4n − l′4n + 3)

(
1

l4n
− 1

l′4n
+ 3

)
= 1.

Note that (2.3) follows from a modular equation in [12, Theorem 3.11] such as

(P 4 −Q4 − 9)

(
1

P 4
− 1

Q4
− 1

)
= 1 with P = ψ(q)

q1/4ψ(q3)
and Q = ψ(−q)

q1/4ψ(−q3) .

In view of (2.3), we evaluate l′4n for n = 1
2 ,

9
2 ,

2
9 ,

1
18 , 2, and 18.

Theorem 2.6. We have

(i) l′42 = 3 + 2
√
2 ,
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(ii) l′41
2

=
√
2 +

√
3 ,

(iii) l′42
9

=
a+ 4

3
+

(a+ 1)
√
a+ 4

3
√
a

,

(iv) l′41
18

=
b+ 4

3
+

(b+ 1)
√
b+ 4

3
√
b

,

(v) l′49
2

=
3
√
a (a+ 1 +

√
a2 + 4a )

(2a− 1)
√
a+ 4

,

(vi) l′418 =
3
√
b (b+ 1 +

√
b2 + 4b )

(2b− 1)
√
b+ 4

,

where

a =
1

2
+

(
3
√
1 + 3

√
2 + 3

√
3 − 1

)4
6 (

√
2 +

√
3 )

and b =
1

2
+

(
3
√
1− 3

√
2 + 3

√
3 − 1

)4
6 (

√
3−

√
2 )

.

Proof. For (i), let n = 2 in (2.3) and put the value of l2 in Lemma 2.1(i), then it

follows that

(3−
√
2 +

√
3 )x2 − 2(5 + 3

√
3 )x+ 3 +

√
2 +

√
3 = 0,

where x = l′42 . Solving the last equation for x and using x > 1, we have the required

result.

The proofs of (ii)–(vi) are similar to that of (i). �

We now evaluate l′4n for n = 1
5 ,

9
5 ,

5
9 ,

1
45 , 5, and 45.

Theorem 2.7. We have

(i) l′45 =
8 + 2

√
15

3−
√
5

,

(ii) l′41
5

=
8 + 2

√
15

3 +
√
5

,

(iii) l′45
9

=
c+ 4

3
+

(c+ 1)
√
c+ 4

3
√
c

,

(iv) l′41
45

=
d+ 4

3
+

(d+ 1)
√
d+ 4

3
√
d

,

(v) l′49
5

=
3
√
c (c+ 1 +

√
c2 + 4c )

(2c− 1)
√
c+ 4

,

(vi) l′445 =
3
√
d (d+ 1 +

√
d2 + 4d )

(2d− 1)
√
d+ 4

,

where

c =
1

2
+

(
3
√

28 + 12
√
5 − 1

)4
6(9 + 4

√
5 )

and d =
1

2
+

(
3
√

28− 12
√
5 − 1

)4
6(9− 4

√
5 )

.
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Proof. The proof follows precisely along the same lines as that for Theorem 2.6. �

We evaluate some more values of l′4n and l4n by employing the following theta

function identities involving l′n, l
′
4n, and ln.

Lemma 2.8 ([9, Corollary 3.4]). For any positive real number n, we have

(2.4) l4n(
√
3 l′24n + 1) = l′24n(l

′2
4n −

√
3 )

Note that (2.4) follows from a modular equation P 4(Q2 + 1) = Q2(Q2 + 3) with

P = ψ(−q)
q1/4ψ(−q3) and Q = ψ(q2)

q1/2ψ(q6)
.

We also need the following theta function identity involving l′n and l′4n.

Lemma 2.9 ([9, Corollary 3.2]). For any positive real number n, we have

(2.5) l′4n (
√
3 l′24n − 1) = l′24n(l

′2
4n +

√
3 )

Note that (2.5) follows from a modular equation P 4(Q2 − 1) = Q2(Q2 + 3) with

P = ψ(q)

q1/4ψ(q3)
and Q = ψ(q2)

q1/2ψ(q6)
.

In view of (2.4), and (2.5), we evaluate l′4n and l4n for n = 9
8 ,

8
9 ,

1
72 , and 72.

Theorem 2.10. Let a and b be as in Theorem 2.6. Then we have

(i) l′48
9

=
1

3
(a+ 1 +

√
a2 + 4a )2 ,

(ii) l′41
72

= 1− (b+ 7)
√
b+ (b+ 1)

√
b+ 4

3
√
b− 3

√
b2 + 4b+ (b+ 1)

√
b2 + 4b

,

(iii) l′49
8

= 1− 3(a+ 1)
√
a+ (5a− 1)

√
a+ 4

(2a− 1)
√
a+ 4− 3

√
2a− 1

√
a2 + 4a+ (a+ 1)

√
a2 + 4a

,

(iv) l′472 =
3(b+ 1 +

√
b2 + 4b )2

(2b− 1)2
.

Proof. For (i), let n = 2
9 in (2.4) and put the value of l 2

9
in Theorem 2.3(ii), then we

deduce that

3x4 − 2
√
3 (a+ 1)x2 − 2a+ 1 = 0,

where x = l′8
9

. Solving the last equation for x and using x > 1, we complete the

proof.

For (ii), let n = 1
72 in (2.5), put the value of l′1

18

in Theorem 2.6(iv), and simplify

the equation to complete the proof

The proofs of (iii) and (iv) are similar to those of (i) or (ii). �
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Theorem 2.11. Let a and b be as in Theorem 2.6. Then we have

(i) l48
9

=
(2a− 1)

√
a+ 4 + 3

√
2a− 1

√
a2 + 4a+ (a+ 1)

√
a2 + 4a

3(a+ 1)
√
a+ 3a

√
a+ 4− 3

√
2a− 1

√
a2 + 4a+ (a+ 1)

√
a2 + 4a

,

(ii) l41
72

= −1 +
(b+ 7)

√
b+ (b+ 1)

√
b+ 4

3
√
b+ 3

√
b2 + 4b+ (b+ 1)

√
b2 + 4b

,

(iii) l49
8

= −1 +
3(a+ 1)

√
a+ (5a− 1)

√
a+ 4

(2a− 1)
√
a+ 4 + 3

√
2a− 1

√
a2 + 4a+ (a+ 1)

√
a2 + 4a

,

(iv) l472 =
3
√
b+ 3

√
b2 + 4b+ (b+ 1)

√
b2 + 4b

(b+ 4)
√
b+ (b+ 1)

√
b+ 4− 3

√
b2 + 4b+ (b+ 1)

√
b2 + 4b

.

Proof. For (i), let n = 8
9 in (2.3) and put the value of l′8

9

in Theorem 2.10(i), then

we find that

(3 l − 1)x2 − (3l2 − 10l + 3)x− l2 + 3l = 0,

where x = l48
9

and l = l′48
9

. Employing Mathematica to solve the last equation for x,

we complete the proof. The proof of (ii) is similar to that of (i).

The proofs of (iii) and (iv) follow from (1.1). �

We evaluate l′4n for n = 5
4 ,

45
4 ,

4
5 ,

36
5 ,

20
9 ,

1
20 ,

9
20 ,

5
36 ,

4
45 ,

1
180 , 20, and 180.

Theorem 2.12. Let c and d be as in Theorem 2.7. Then we have

(i) l′420 = (2 +
√
5 )2(4 +

√
15 )2 ,

(ii) l′45
4

=
3 +

√
15 + (4 +

√
15 )
√
3 +

√
5

3 +
√
15−

√
3−

√
5

,

(iii) l′44
5

= (−2 +
√
5 )2(4 +

√
15 )2 ,

(iv) l′41
20

=
3 +

√
15 + (4 +

√
15 )
√
3−

√
5

3 +
√
15−

√
3 +

√
5

,

(v) l′420
9

=
1

3
(c+ 1 +

√
c2 + 4c )2 ,

(vi) l′45
36

= 1− (c+ 7)
√
c+ (c+ 1)

√
c+ 4

3
√
c− 3

√
c2 + 4c+ (c+ 1)

√
c2 + 4c

,

(vii) l′44
45

=
1

3
(d+ 1 +

√
d2 + 4d )2 ,

(viii) l′41
180

= 1− (d+ 7)
√
d+ (d+ 1)

√
d+ 4

3
√
d− 3

√
d2 + 4d+ (d+ 1)

√
d2 + 4d

,
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(ix) l′4180 =
3(d+ 1 +

√
d2 + 4d )2

(2d− 1)2
,

(x) l′445
4

= 1− 3(d+ 1)
√
d+ (5d− 1)

√
d+ 4

(2d− 1)
√
d+ 4− 3

√
2d− 1

√
d2 + 4d+ (d+ 1)

√
d2 + 4d

,

(xi) l′436
5

=
3(c+ 1 +

√
c2 + 4c )2

(2c− 1)2
,

(xii) l′49
20

= 1− 3(c+ 1)
√
c+ (5c− 1)

√
c+ 4

(2c− 1)
√
c+ 4− 3

√
2c− 1

√
c2 + 4c+ (c+ 1)

√
c2 + 4c

.

Proof. For (i), let n = 5 in (2.5) and put l45 = 9 + 4
√
5 from Theorem 2.1(ii), then

we find that

(3−
√
5 ) l′420 − (5

√
3 + 6

√
5 +

√
15 ) l′220 + 8 + 2

√
5 = 0.

Solve the last equation for l′20 and use l′20 > 0 to complete the proof. For the proofs

of (iii), (v), (vii), (ix), and (xi), repeat the same argument as in the proof of (i).

For (ii), let n = 5
4 in (2.4) and put the value l′5 from Theorem 2.8(i), then we find

that (
3 +

√
15−

√
3−

√
5

)
l′45 = 3 +

√
15 + (4 +

√
15 )

√
3 +

√
5 .

Hence we have the required result. The proofs of (iv), (vi), (viii), (x), (xii) are

similar to that of (ii). �

We end this section by evaluating l4n for n = 5
4 ,

45
4 ,

4
5 ,

36
5 ,

20
9 ,

1
20 ,

9
20 ,

5
36 ,

4
45 ,

1
180 ,

20, and 180.

Theorem 2.13. Let c and d be as in Theorem 2.7. Then we have

(i) l420 =
8− 3

√
2 + 5

√
6

6− 5
√
3− 4

√
5 + 3

√
15

,

(ii) l45
4

=
6 + 5

√
3 + 4

√
5 + 3

√
15

8 + 3
√
2 + 5

√
6

,

(iii) l44
5

=
8 + 3

√
2 + 5

√
6

6 + 5
√
3 + 4

√
5 + 3

√
15

,

(iv) l41
20

=
6− 5

√
3− 4

√
5 + 3

√
15

8− 3
√
2 + 5

√
6

,

(v) l420
9

=
(2c− 1)

√
c+ 4 + 3

√
2c− 1

√
c2 + 4c+ (c+ 1)

√
c2 + 4c

3(c+ 1)
√
c+ 3c

√
c+ 4− 3

√
2c− 1

√
c2 + 4c+ (c+ 1)

√
c2 + 4c

,
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(vi) l45
36

= −1 +
(c+ 7)

√
c+ (c+ 1)

√
c+ 4

3
√
c+ 3

√
c2 + 4c+ (c+ 1)

√
c2 + 4c

,

(vii) l44
45

=
(2d− 1)

√
d+ 4 + 3

√
2d− 1

√
d2 + 4d+ (d+ 1)

√
d2 + 4d

3(d+ 1)
√
d+ 3d

√
d+ 4− 3

√
2d− 1

√
d2 + 4d+ (d+ 1)

√
d2 + 4d

,

(viii) l41
180

= −1 +
(d+ 7)

√
d+ (d+ 1)

√
d+ 4

3
√
d+ 3

√
d2 + 4d+ (d+ 1)

√
d2 + 4d

,

(ix) l4180 =
3
√
d+ 3

√
d2 + 4d+ (d+ 1)

√
d2 + 4d

(d+ 4)
√
d+ (d+ 1)

√
d+ 4− 3

√
d2 + 4d+ (d+ 1)

√
d2 + 4d

,

(x) l445
4

= −1 +
3(d+ 1)

√
d+ (5d− 1)

√
d+ 4

(2d− 1)
√
d+ 4 + 3

√
2d− 1

√
d2 + 4d+ (d+ 1)

√
d2 + 4d

(xi) l436
5

=
3
√
c+ 3

√
c2 + 4c+ (c+ 1)

√
c2 + 4c

(c+ 4)
√
c+ (c+ 1)

√
c+ 4− 3

√
c2 + 4c+ (c+ 1)

√
c2 + 4c

,

(xii) l49
20

= −1 +
3(c+ 1)

√
c+ (5c− 1)

√
c+ 4

(2c− 1)
√
c+ 4 + 3

√
2c− 1

√
c2 + 4c+ (c+ 1)

√
c2 + 4c

.

Proof. For (i), let n = 20 in (2.3) and put l420 = (2+
√
5 )2(4+

√
15 )2 from Theorem

2.12(i), then we deduce that

2 l820 − 8(69 + 40
√
3 + 31

√
5 + 18

√
15 ) l420 − 188− 105

√
3− 84

√
5− 47

√
15 = 0.

Using Mathematica to solve the last equation for l420, we complete the proof.

For (ii), let n = 5
4 in (2.5) and put the value of l′5 in Theorem 2.8(i) to complete

the proof. For (iii)– (xii), repeat the same argument as in the proofs of (i) or (ii). �

3. Evaluations of G(q)

In this section, we evaluate about 46 values G(−qn) and G(qn) including 36 new

ones. Just for editorial convenience, we evaluate G3(−qn) and G3(qn). By taking

cube roots of them, the required values of G(−qn) and G(qn) can easily be obtained.

We first evaluate G3(−qn) and G3(qn) for n = 3
2 ,

2
3 ,

1
6 ,

2
27 ,

1
54 , and 6.

Theorem 3.1. We have

(i) G3(−q 2
3
) =

−1

1 + 3(
√
2 +

√
3 )

,
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(ii) G3(−q 1
6
) =

−1

1− 3(
√
2−

√
3 )

,

(iii) G3(−q 2
27
) =

−3(
√
2 +

√
3 )

3(
√
2 +

√
3 ) +

(
1− 3

√
1 + 3

√
2 + 3

√
3
)4 ,

(iv) G3(−q 1
54
) =

−3(
√
2−

√
3)

3(
√
2−

√
3 )−

(
1− 3

√
1− 3

√
2 + 3

√
3
)4 ,

(v) G3(−q 3
2
) =

−
(
1− 3

√
1− 3

√
2 + 3

√
3
)4

27(
√
2 +

√
3 ) +

(
1− 3

√
1− 3

√
2 + 3

√
3
)4 ,

(vi) G3(−q6) =

(
1− 3

√
1− 3

√
2 + 3

√
3
)4

27(
√
2−

√
3 )−

(
1− 3

√
1− 3

√
2 + 3

√
3
)4 .

Proof. The results follow from (1.3), Lemma 2.1(i), and Theorem 2.3. �

Theorem 3.2. Let a and b be as in Theorem 2.6. Then we have

(i) G3(q 2
3
) =

−4 + 3
√
2

4
,

(ii) G3(q 1
6
) =

1

−1 + 3
√
2 + 3

√
3
,

(iii) G3(q 2
27
) =

(a+ 1)
√
a2 + 4a− a(a+ 3)

4
,

(iv) G3(q 1
54
) =

(b+ 1)
√
b2 + 4b− b(b+ 3)

4
,

(v) G3(q 3
2
) =

(2a− 1)
√
a+ 4

9(a+ 1)
√
a+ (7a+ 1)

√
a+ 4

,

(vi) G3(q6) =
(2b− 1)

√
b+ 4

9(b+ 1)
√
b+ (7b+ 1)

√
b+ 4

.

Proof. The proofs are clear by (1.2) and Theorem 2.6. �

Note that an explicit value of G(q6) in [11, Theorem 6.3.3(ii)] was given by

G(q6) =
3
√

3− 2
√
2

2 + 2
3
√
1 +

√
2 +

√
2

3
√

3 + 2
√
2
. Note also that the value of G3(q 1

6
) was

given in [8, Theorem 5.5(i)].

We next evaluate G(−qn) and G(qn) for n = 5
3 ,

3
5 ,

1
15 ,

5
27 ,

1
135 , and 15.

Theorem 3.3. We have

(i) G3(−q 5
3
) =

−1

4(7 + 3
√
5 )

,



38 Dae Hyun Paek

(ii) G3(−q 1
15
) =

−7− 3
√
5

16
,

(iii) G3(−q 5
27
) =

−3

3 + (−2 +
√
5 )2

(
−1 +

3
√
28 + 12

√
5
)4 ,

(iv) G3(−q 1
135

) =
−3

3 + (2 +
√
5 )2

(
−1 +

3
√

28− 12
√
5
)4 ,

(v) G3(−q 3
5
) =

1−
(
−1 +

3
√

28 + 12
√
5
)4

3(6 + 3
√
5 )2 +

(
−1 +

3
√
28 + 12

√
5
)4 ,

(vi) G3(−q15) =
1−

(
−1 +

3
√

28− 12
√
5
)4

3(−6 + 3
√
5 )2 +

(
−1 +

3
√

28− 12
√
5
)4 .

Proof. The results follow from (1.3), Lemma 2.1(ii), and Theorem 2.4. �

Theorem 3.4. Let c and d be as in Theorem 2.7. Then we have

(i) G3(q 5
3
) =

3−
√
5

21 +
√
5 + 6

√
15

,

(ii) G3(q 1
15
) =

3 +
√
5

21−
√
5 + 6

√
15

,

(iii) G3(q 5
27
) =

(c+ 1)
√
c2 + 4c− c(c+ 3)

4
,

(iv) G3(q 1
135

) =
(d+ 1)

√
d2 + 4d− d(d+ 3)

4
,

(v) G3(q 3
5
) =

(2c− 1)
√
c+ 4

9(c+ 1)
√
c+ (7c+ 1)

√
c+ 4

,

(vi) G3(q15) =
(2d− 1)

√
d+ 4

9(d+ 1)
√
d+ (7d+ 1)

√
d+ 4

.

Proof. The results follow from (1.2) and Theorem 2.7. �

We now evaluate G(qn) and G(−qn) for n = 3
8 ,

8
27 ,

1
216 , and 24.

Theorem 3.5. Let a and b be as in Theorem 2.6. Then we have

(i) G3(q 8
27
) =

(a+ 1)
√
a2 + 4a− a(a+ 3)

8a
,

(ii) G3(q 1
216

) =
−
√
b+

√
b2 + 4b+ (b+ 1)

√
b2 + 4b

(b+ 5)
√
b+ (b+ 1)

√
b+ 4 + 2

√
b2 + 4b+ (b+ 1)

√
b2 + 4b

,

(iii) G3(q 3
8
)
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=
−(2a− 1)

√
a+ 4 + 3

√
2a− 1

√
a2 + 4a+ (a+ 1)

√
a2 + 4a

9(a+ 1)
√
a+ (11a− 1)

√
a+ 4 + 6

√
2a− 1

√
a2 + 4a+ (a+ 1)

√
a2 + 4a

,

(iv) G3(q24) =
5b+ 2− 3

√
b2 + 4b

4(b+ 4 + 3
√
b2 + 4b )

.

Proof. The results follow from (1.2) and Theorem 2.10. �

Theorem 3.6. Let c and d be as in Theorem 2.7. Then we have

(i) G3(−q 8
27
)

=
−(a+ 1)

√
a− a

√
a+ 4 +

√
2a− 1

√
a2 + 4a+ (a+ 1)

√
a2 + 4a

(a+ 1)
√
a+ (3a− 1)

√
a+ 4 + 2

√
2a− 1

√
a2 + 4a+ (a+ 1)

√
a2 + 4a

,

(ii) G3(−q 1
216

)

=
−
√
b−

√
b2 + 4b+ (b+ 1)

√
b2 + 4b

(b+ 5)
√
b+ (b+ 1)

√
b+ 4− 2

√
b2 + 4b+ (b+ 1)

√
b2 + 4b

,

(iii) G3(−q 3
8
)

=
−(2a− 1)

√
a− 3

√
2a− 1

√
a2 + 4a+ (a+ 1)

√
a2 + 4a

9(a+ 1)
√
a+ (11a− 1)

√
a+ 4− 6

√
2a− 1

√
a2 + 4a+ (a+ 1)

√
a2 + 4a

,

(iv) G3(−q24)

=
−(b+ 4)

√
b− (b+ 1)

√
b+ 4 + 3

√
b2 + 4b+ (b+ 1)

√
b2 + 4b

(b+ 13)
√
b+ (b+ 1)

√
b+ 4 + 6

√
b2 + 4b+ (b+ 1)

√
b2 + 4b

.

Proof. The results follow from (1.3) and Theorem 2.11. �

We end this section by evaluating G3(qn) and G
3(−qn) for n = 20

3 ,
15
4 ,

12
5 ,

5
12 ,

4
15 ,

3
20 ,

20
27 ,

1
60 ,

5
108 ,

4
135 ,

1
540 and n = 60.

Theorem 3.7. Let c and d be as in Theorem 2.7. Then we have

(i) G3(q 20
3
) =

31− 8
√
15

4
(
−1 + 3

√
5 + 2

√
15
) ,

(ii) G3(q 5
12
) =

1 + 3
√
2−

√
5 +

√
30

11 + 6
√
2 + 15

√
3 +

√
5 (13 + 3

√
3 + 2

√
6 )

,

(iii) G3(q 4
15
) =

9 + 4
√
5

4
(
21−

√
5 + 6

√
15
) ,

(iv) G3(q 1
60
) =

−1 + 3
√
2−

√
5 +

√
30

−11 + 6
√
2 + 15

√
3 +

√
5 (13− 3

√
3 + 2

√
6 )

,
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(v) G3(q 20
27
) =

(c+ 1)
√
c2 + 4c− c(c+ 3)

8c
,

(vi) G3(q 5
108

) =
−
√
c+

√
c2 + 4c+ (c+ 1)

√
c2 + 4c

(c+ 5)
√
c+ (c+ 1)

√
c+ 4 + 2

√
c2 + 4c+ (c+ 1)

√
c2 + 4c

,

(vii) G3(q 4
135

) =
(d+ 1)

√
d2 + 4d− d(d+ 3)

8d
,

(viii) G3(q 1
540

) =
−
√
d+

√
d2 + 4d+ (d+ 1)

√
d2 + 4d

(d+ 5)
√
d+ (d+ 1)

√
d+ 4 + 2

√
d2 + 4d+ (d+ 1)

√
d2 + 4d

,

(ix) G3(q60) =
5d+ 2− 3

√
d2 + 4b

4(d+ 4 + 3
√
d2 + 4d )

,

(x) G3(q 15
4
)

=
−(2d− 1)

√
d+ 4 + 3

√
2d− 1

√
d2 + 4d+ (d+ 1)

√
d2 + 4d

9(d+ 1)
√
d+ (11d− 1)

√
d+ 4 + 6

√
2d− 1

√
d2 + 4d+ (d+ 1)

√
d2 + 4d

,

(xi) G3(q 12
5
) =

5c+ 2− 3
√
c2 + 4c

4(c+ 4 + 3
√
c2 + 4c )

,

(xii) G3(q 3
20
)

=
−(2c− 1)

√
c+ 4 + 3

√
2c− 1

√
c2 + 4c+ (c+ 1)

√
c2 + 4c

9(c+ 1)
√
c+ (11c− 1)

√
c+ 4 + 6

√
2c− 1

√
c2 + 4c+ (c+ 1)

√
c2 + 4c

.

Proof. The results are immediate from (1.2) and Theorem 2.12. �

Theorem 3.8. Let c and d be as in Theorem 2.7. Then we have

(i) G3(−q 20
3
) =

−6 + 5
√
3 + 4

√
5− 3

√
15

30− 9
√
2− 5

√
3− 4

√
5 + 15

√
6 + 3

√
15

,

(ii) G3(−q 5
12
) =

−16 + 9
√
2 + 8

√
3− 7

√
6

7− 9
√
2 + 4

√
3− 3

√
5 + 7

√
6 + 6

√
15

,

(iii) G3(−q 4
15
) =

−6− 5
√
3− 4

√
5− 3

√
15

30 + 9
√
2 + 5

√
3 + 4

√
5 + 15

√
6 + 3

√
15

,

(iv) G3(−q 1
60
) =

−16− 9
√
2− 8

√
3− 7

√
6

7 + 9
√
2− 4

√
3 + 3

√
5 + 7

√
6 + 6

√
15

,

(v) G3(−q 20
27
)

=
−(c+ 1)

√
c− c

√
c+ 4 +

√
2c− 1

√
c2 + 4c+ (c+ 1)

√
c2 + 4c

(c+ 1)
√
c+ (3c− 1)

√
c+ 4 + 2

√
2c− 1

√
c2 + 4c+ (c+ 1)

√
c2 + 4c

,

(vi) G3(−q 5
108

)
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=
−
√
c−

√
c2 + 4c+ (c+ 1)

√
c2 + 4c

(c+ 5)
√
c+ (c+ 1)

√
c+ 4− 2

√
c2 + 4c+ (c+ 1)

√
c2 + 4c

,

(vii) G3(−q 4
135

)

=
−(d+ 1)

√
d− d

√
d+ 4 +

√
2d− 1

√
d2 + 4d+ (d+ 1)

√
d2 + 4d

(d+ 1)
√
d+ (3d− 1)

√
d+ 4 + 2

√
2d− 1

√
d2 + 4d+ (d+ 1)

√
d2 + 4d

,

(viii) G3(−q 1
540

)

=
−
√
d−

√
d2 + 4d+ (d+ 1)

√
d2 + 4d

(d+ 5)
√
d+ (d+ 1)

√
d+ 4− 2

√
d2 + 4d+ (d+ 1)

√
d2 + 4d

,

(ix) G3(−q60)

=
−(d+ 4)

√
d− (d+ 1)

√
d+ 4 + 3

√
d2 + 4d+ (d+ 1)

√
d2 + 4d

(d+ 13)
√
d+ (d+ 1)

√
d+ 4 + 6

√
d2 + 4d+ (d+ 1)

√
d2 + 4d

,

(x) G3(−q 15
4
)

=
−(2d− 1)

√
d+ 4− 3

√
2d− 1

√
d2 + 4d+ (d+ 1)

√
d2 + 4d

9(d+ 1)
√
d+ (11d− 1)

√
d+ 4− 6

√
2d− 1

√
d2 + 4d+ (d+ 1)

√
d2 + 4d

,

(xi) G3(−q 12
5
)

=
−(c+ 4)

√
c− (c+ 1)

√
c+ 4 + 3

√
c2 + 4c+ (c+ 1)

√
c2 + 4c

(c+ 13)
√
c+ (c+ 1)

√
c+ 4 + 6

√
c2 + 4c+ (c+ 1)

√
c2 + 4c

,

(xii) G3(−q 3
20
)

=
−(2c− 1)

√
c+ 4− 3

√
2c− 1

√
c2 + 4c+ (c+ 1)

√
c2 + 4c

9(c+ 1)
√
c+ (11c− 1)

√
c+ 4− 6

√
2c− 1

√
c2 + 4c+ (c+ 1)

√
c2 + 4c

.

Proof. The results follow directly from (1.3) and Theorem 2.13. �
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