TWO KINDS OF CONVERGENCES IN HYPERBOLIC SPACES IN THREE-STEP ITERATIVE SCHEMES

Seung Hyun Kim $^{\rm a}$ and Mee Kwang Kang $^{\rm b,*}$

ABSTRACT. In this paper, we introduce a new three-step iterative scheme for three finite families of nonexpansive mappings in hyperbolic spaces. And, we establish a strong convergence and a Δ -convergence of a given iterative scheme to a common fixed point for three finite families of nonexpansive mappings in hyperbolic spaces. Our results generalize and unify the several main results of [1, 4, 5, 9].

1. INTRODUCTION AND PRELIMINARIES

In 1990, Reich and Shafrir [8] introduced the concept of hyperbolic spaces, which includes normed linear spaces and Hadamard manifolds, as well as the Hilbert ball and the Cartesian product of Hilbert balls. From then Kohlenbach [6] generalized the concept of hyperbolic spaces of Reich and Shafrir [8] with CAT(0)-spaces in 2004. On the other hand, Dhompongsa and Panyanak [3] investigated the concept of Δ -convergence in CAT(0)-sapces and Khan et al. [4] introduced the concept of Δ convergence in the more general setup of hyperbolic spaces. Recently, Akbulut and Gunduz [1] introduced a two-step algorithm for two finite families of nonexappsive self-mappings in a hyperbolic space and established a strong convergence result and a Δ -convergence result.

In this paper, we consider a strong convergence and a Δ -convergence of a new three-step iterative scheme for three finite families of nonexpansive mappings in hyperbolic spaces. Our results extend and unify the corresponding ones in [1, 4, 5, 9].

*Corresponding author.

Received by the editors October 28, 2020. Accepted January 07, 2021.

²⁰¹⁰ Mathematics Subject Classification. 47H09, 47H10.

Key words and phrases. three-step iterative scheme, common fixed point, nonexpansive mappings, Δ -convergence, hyperbolic spaces.

This work was supported by Dong-eui University Grant. (202003670001).

 $[\]bigodot 2021$ Korean Soc. Math. Educ.

Definition 1.1 ([6]). (X, d, W) is called a *hyperbolic space* if (X, d) is a metric space and $W: X \times X \times [0, 1] \to X$ is a mapping satisfying (i) $d(z, W(x, y, \alpha)) \leq (1 - \alpha)d(z, x) + \alpha d(z, y)$, (ii) $d(W(x, y, \alpha), W(x, y, \beta)) = |\alpha - \beta|d(x, y)$, (iii) $W(x, y, \alpha) = W(y, x, (1 - \alpha))$, (iv) $d(W(x, z, \alpha), W(y, w, \alpha)) \leq (1 - \alpha)d(x, y) + \alpha d(z, w)$ for $x, y, z, w \in X$ and $\alpha, \beta \in [0, 1]$.

Definition 1.2 ([10]). A hyperbolic space (X, d, W) is said to be uniformly convex if for any r > 0 and $\varepsilon \in (0, 2]$, there exists a $\delta \in (0, 1]$ such that for all $x, y, z \in X$,

$$d(x,z) \le r, \ d(y,z) \le r \text{ and } d(x,y) \ge \varepsilon r \Rightarrow d(W(x,y,\frac{1}{2}),z) \le (1-\delta)r.$$

A function $\eta : (0, \infty) \times (0, 1] \to (0, 1]$ which provides such a $\delta = \eta(r, \varepsilon)$ for given r > 0 and $\varepsilon \in (0, 2]$, is called a *modulus* of uniform convexity. We call η a *monotone* function if it decreases with r (for a fixed ε).

A set $A(\{x_n\}) := \{x \in X : \inf_{\substack{y \in X \ n \to \infty}} \limsup_{\substack{n \to \infty}} d(y, x_n) = \limsup_{\substack{n \to \infty}} d(x, x_n)\}$ is called the *asymptotic center* of a given sequence $\{x_n\}$ in a hyperbolic space X with an asymptotic radius $r(\{x_n\}) := \inf_{\substack{y \in X \ n \to \infty}} \limsup_{\substack{n \to \infty}} d(y, x_n).$

Definition 1.3 ([4]). A sequence $\{x_n\}$ in X is said to Δ -converge to $x \in X$ if x is the unique asymptotic center of its all subsequences. In this case, x is called the Δ -limit of $\{x_n\}$ and denoted as Δ -lim $x_n = x$.

Lemma 1.4 ([4]). Let (X, d, W) be a uniformly convex hyperbolic space with a monotone modulus of uniform convexity η . Let $x \in X$ and $\{a_n\}$ be a sequence in [b, c] for some $b, c \in (0, 1)$. If $\{x_n\}$ and $\{y_n\}$ are sequences in X such that $\limsup_{n \to \infty} d(x_n, x) \leq t$, $\limsup_{n \to \infty} d(y_n, x) \leq t$ and $\limsup_{n \to \infty} d(W(x_n, y_n, a_n), x) = t$ for some $t \geq 0$, then $\lim_{n \to \infty} d(x_n, y_n) = 0$.

Lemma 1.5 ([7]). Let (X, d, W) be a complete uniformly convex hyperbolic space with a monotone modulus of uniform convexity η . Then every bounded sequence $\{x_n\}$ in X has a unique asymptotic center with respect to any nonempty closed convex subset K of X.

Lemma 1.6 ([4]). Let K be a nonempty closed convex subset of a uniformly convex hyperbolic space and $\{x_n\}$ a bounded sequence in K such that $A(\{x_n\}) = \{y\}$ and

62

 $r(\{x_n\}) = \rho. \quad If \{y_m\} \text{ is another sequence in } K \text{ such that } \lim_{m \to \infty} r(y_m, \{x_n\}) = \rho,$ where $r(y_m, \{x_n\}) = \limsup_{n \to \infty} d(y_m, x_n), \text{ then } \lim_{m \to \infty} y_m = y.$

Now, we introduce a new three-step iterative scheme for three finite families of nonexpansive mappings in hyperbolic spaces. A self-mapping T on K is said to be *nonexpansive* if $d(Tx, Ty) \leq d(x, y)$ for $x, y \in K$.

Algorithm 1.1. Let $\{T_n\}$, $\{S_n\}$ and $\{R_n\}(n \in \overline{1, N}(:= \{1, \dots, N\}))$ be three finite families of nonexpansive self mappings on K, and $\{x_n\}$ be a sequence defined by

$$\begin{cases} x_1 \in K, \\ x_{n+1} = W(T_n x_n, S_n y_n, \alpha_n) \\ y_n = W(R_n x_n, T_n z_n, \beta_n) \\ z_n = W(x_n, R_n x_n, \gamma_n) \text{ for } n \in \mathbb{N}, \end{cases}$$

where $T_n = T_{n(modN)}$, $S_n = S_{n(modN)}$ and $R_n = R_{n(modN)}$ are nonexpansive mappings, and $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ are sequences in [0, 1] for $N \in \mathbb{N}$.

2. Δ -convergence Result

In this section, we establish a Δ -convergence of Algorithm 1.1. Denote by F(T), the set of fixed points of T. First of all, we prove the following lemmas needed in our results.

Lemma 2.1. Let K be a nonempty closed convex subset of a hyperbolic space X and $\{T_i\}, \{S_i\}$ and $\{R_i\}$ be three finite families of nonexpansive self-mappings on K with $F := (\bigcap_{i=1}^{N} F(T_i)) \bigcap (\bigcap_{i=1}^{N} F(S_i)) \bigcap (\bigcap_{i=1}^{N} F(R_i)) \neq \emptyset$. Suppose that $\{x_n\}$ is generated by Algorithm 1.1. Then, for any $p \in F$, $\lim_{n \to \infty} d(x_n, p)$ exsits.

Proof. For any $p \in F$,

$$d(x_{n+1}, p) = d(W(T_n x_n, S_n y_n, \alpha_n), p)$$

$$\leq (1 - \alpha_n)d(T_n x_n, p) + \alpha_n d(S_n y_n, p)$$

$$= (1 - \alpha_n)d(T_n x_n, T_n p) + \alpha_n d(S_n y_n, S_n p)$$

$$\leq (1 - \alpha_n)d(x_n, p) + \alpha_n d(y_n, p)$$

$$= (1 - \alpha_n)d(x_n, p) + \alpha_n d(W(R_n x_n, T_n z_n, \beta_n), p)$$

$$\leq (1 - \alpha_n)d(x_n, p) + \alpha_n \{(1 - \beta_n)d(R_n x_n, p) + \beta_n d(T_n z_n, p)\}$$

$$= (1 - \alpha_n)d(x_n, p) + \alpha_n\{(1 - \beta_n)d(R_nx_n, R_np) + \beta_nd(T_nz_n, T_np)\}$$

$$\leq (1 - \alpha_n)d(x_n, p) + \alpha_n\{(1 - \beta_n)d(x_n, p) + \beta_nd(z_n, p)\}$$

$$= (1 - \alpha_n\beta_n)d(x_n, p) + \alpha_n\beta_nd(z_n, p)$$

$$\leq (1 - \alpha_n\beta_n)d(x_n, p) + \alpha_n\beta_n\{(1 - \gamma_n)d(x_n, p) + \gamma_nd(R_nx_n, p)\}$$

$$\leq (1 - \alpha_n\beta_n)d(x_n, p) + \alpha_n\beta_n\{(1 - \gamma_n)d(x_n, p) + \gamma_nd(x_n, p)\}$$

$$= d(x_n, p),$$

which implies that $\lim_{n\to\infty} d(x_n, p)$ exists for $p \in F$.

Lemma 2.2. Let K be a nonempty closed convex subset of a uniformly convex hyperbolic space X with a monotone modulus of uniform convexity η and let $\{T_i\}$, $\{S_i\}$, $\{R_i\}$, $\{x_n\}$ and F be the same as cited in Lemma 2.1.

Then
$$\lim_{n \to \infty} d(x_n, T_i x_n) = \lim_{n \to \infty} d(x_n, S_i x_n) = \lim_{n \to \infty} d(x_n, R_i x_n) = 0$$
 for $i \in \overline{1, N}$.

Proof. From Lemma 2.1, $\lim_{n \to \infty} d(x_n, p)$ exists for $p \in F$, say $\lim_{n \to \infty} d(x_n, p) = c$. In the case of c = 0, the proof is trivial. Now, we deal with the case of c > 0.

$$d(z_n, p) = d(W(x_n, R_n x_n, \gamma_n), p)$$

$$\leq (1 - \gamma_n) d(x_n, p) + \gamma_n d(R_n x_n, p)$$

$$\leq (1 - \gamma_n) d(x_n, p) + \gamma_n d(x_n, p)$$

$$= d(x_n, p),$$

which implies that

(2.1)
$$\limsup_{n \to \infty} d(z_n, p) \le c$$

and

$$d(y_n, p) = d(W(R_n x_n, T_n z_n, \beta_n), p)$$

$$\leq (1 - \beta_n) d(R_n x_n, p) + \beta_n d(T_n z_n, p)$$

$$\leq (1 - \beta_n) d(x_n, p) + \beta_n d(z_n, p)$$

$$\leq (1 - \beta_n) d(x_n, p) + \beta_n d(x_n, p)$$

$$= d(x_n, p),$$

which implies that

(2.2)
$$\limsup_{n \to \infty} d(y_n, p) \le c.$$

Since $d(T_nx_n, p) \leq d(x_n, p)$, $d(S_ny_n, p) \leq d(y_n, p)$ and $d(R_nx_n, p) \leq d(x_n, p)$ for $n \in \mathbb{N}$, from (2.1) and (2.2), we get

(2.3)
$$\limsup_{n \to \infty} d(T_n x_n, p) \le c, \quad \limsup_{n \to \infty} d(S_n y_n, p) \le c$$

and
$$\limsup_{n \to \infty} d(R_n x_n, p) \le c.$$

Moreover, since $c = \lim_{n \to \infty} d(x_{n+1}, p) = \lim_{n \to \infty} d(W(T_n x_n, S_n y_n, \alpha_n), p)$, by Lemma 1.4, we have

(2.4)
$$\lim_{n \to \infty} d(T_n x_n, S_n y_n) = 0.$$

Now

$$d(x_{n+1}, p) = d(W(T_n x_n, S_n y_n, \alpha_n), p)$$

$$\leq (1 - \alpha_n) d(T_n x_n, p) + \alpha_n d(S_n y_n, p)$$

$$\leq (1 - \alpha_n) d(T_n x_n, p) + \alpha_n d(S_n y_n, T_n x_n) + \alpha_n d(T_n x_n, p)$$

$$= d(T_n x_n, p) + \alpha_n d(S_n y_n, T_n x_n),$$

which implies that

$$c \le \liminf_{n \to \infty} d(T_n x_n, p).$$

From (2.3), we have

(2.5)
$$\lim_{n \to \infty} d(T_n x_n, p) = c.$$

On the other hand,

$$d(T_n x_n, p) \leq d(T_n x_n, S_n y_n) + d(S_n y_n, p)$$

$$\leq d(T_n x_n, S_n y_n) + d(y_n, p),$$

which implies that $c \leq \liminf_{n \to \infty} d(y_n, p)$. Thus, from (2.2), $c = \lim_{n \to \infty} d(y_n, p) = \lim_{n \to \infty} d(W(R_n x_n, T_n z_n, \beta_n), p)$. By Lemma 1.4, we have (2.6) $\lim_{n \to \infty} d(R_n x_n, T_n z_n) = 0.$

Now

$$d(y_n, p) = d(W(R_n x_n, T_n z_n, \beta_n), p)$$

$$\leq (1 - \beta_n) d(R_n x_n, p) + \beta_n d(T_n z_n, p)$$

$$\leq (1 - \beta_n) d(R_n x_n, p) + \beta_n \{ d(T_n z_n, p) + d(R_n x_n, p) \}$$

$$= d(R_n x_n, p) + \beta_n d(T_n z_n, R_n x_n),$$

which implies that $c \leq \liminf_{n \to \infty} d(R_n x_n, p)$. From (2.3), we have $\lim_{n \to \infty} d(R_n x_n, p) = c$. By (2.6), we obtain $d(R_n x_n, p) \leq d(R_n x_n, T_n z_n) + d(T_n z_n, p)$ $\leq d(R_n x_n, T_n z_n) + d(z_n, p),$

which implies that $c \leq \liminf_{n \to \infty} d(z_n, p)$. Thus, $c = \lim_{n \to \infty} d(z_n, p) = \lim_{n \to \infty} d(W(x_n, R_n x_n, \gamma_n), p)$. By Lemma 1.4, we have (2.7) $\lim_{n \to \infty} d(x_n, R_n x_n) = 0.$

Now

$$d(z_n, x_n) = d(W(x_n, R_n x_n, \gamma_n), x_n)$$

$$\leq (1 - \gamma_n) d(x_n, x_n) + \gamma_n d(R_n x_n, x_n)$$

$$= \gamma_n d(R_n x_n, x_n),$$

which implies by (2.7) that

(2.8) $\lim_{n \to \infty} d(z_n, x_n) = 0.$

From (2.6), (2.7) and (2.8), we have

$$d(x_n, T_n x_n) \leq d(x_n, R_n x_n) + d(R_n x_n, T_n z_n) + d(T_n z_n, T_n x_n)$$

$$\leq d(x_n, R_n x_n) + d(R_n x_n, T_n z_n) + d(z_n, x_n) \to 0 \text{ as } n \to \infty.$$

Next

$$d(x_{n+1}, x_n) = d(W(T_n x_n, S_n y_n, \alpha_n), x_n)$$

$$\leq (1 - \alpha_n) d(T_n x_n, x_n) + \alpha_n d(S_n y_n, x_n)$$

$$\leq (1 - \alpha_n) d(T_n x_n, x_n) + \alpha_n \{ d(S_n y_n, T_n x_n) + d(T_n x_n, x_n) \}$$

$$= d(T_n x_n, x_n) + \alpha_n d(S_n y_n, T_n x_n) \to 0 \text{ as } n \to \infty,$$

which implies that $\lim_{n \to \infty} d(x_{n+i}, x_n) = 0$ for $i \in \overline{1, N}$. Further, observe that

$$\begin{array}{lll} d(x_n, T_{n+i}x_n) &\leq & d(x_n, x_{n+i}) + d(x_{n+i}, T_{n+i}x_{n+i}) + d(T_{n+i}x_{n+i}, T_{n+i}x_n) \\ &\leq & d(x_n, x_{n+i}) + d(x_{n+i}, T_{n+i}x_{n+i}) + d(x_{n+i}, x_n) \\ &= & 2d(x_n, x_{n+i}) + d(x_{n+i}, T_{n+i}x_{n+i}) \to 0 \ \text{as} \ n \to \infty. \end{array}$$

Since $\{d(x_n, T_i x_n)\}$ is a subsequence of $\bigcup_{i=1}^{N} \{d(x_n, T_{n+i} x_n)\}, \lim_{n \to \infty} d(x_n, T_i x_n) = 0$ for $i \in \overline{1, N}$. Similarly, we can obtain $\lim_{n \to \infty} d(x_n, S_i x_n) = \lim_{n \to \infty} d(x_n, R_i x_n) = 0$ for $i \in \overline{1, N}$. Now, we prove the following Δ -convergence result.

Theorem 2.3. Let K be a nonempty closed convex subset of a uniformly convex hyperbolic space X with a monotone modulus of uniform convexity η and $\{T_i\}$, $\{S_i\}$ and $\{R_i\}$ be three finite families of nonexpansive self-mappings on K with $F := (\bigcap_{i=1}^{N} F(T_i)) \bigcap (\bigcap_{i=1}^{N} F(S_i)) \bigcap (\bigcap_{i=1}^{N} F(R_i)) \neq \emptyset$. Suppose that $\{x_n\}$ is generated by Algorithm 1.1. Then $\{x_n\}$ Δ -converges to an element of F.

Proof. From Lemma 2.1, $\{x_n\}$ is bounded. Therefore by Lemma 1.5, $\{x_n\}$ has a unique asymptotic center, that is, $A(\{x_n\}) = \{x\}$ for some $x \in K$. Assume that $\{x_{n_k}\}$ is any subsequence of $\{x_n\}$ such that $A(\{x_{n_k}\}) = \{u\}$. Then by Lemma 2.2, we get $\lim_{k\to\infty} d(x_{n_k}, T_i x_{n_k}) = \lim_{k\to\infty} d(x_{n_k}, S_i x_{n_k}) = \lim_{k\to\infty} d(x_{n_k}, R_i x_{n_k}) = 0$ for $i \in \overline{1, N}$. We claim that $u \in F$. Now, we define a sequence $\{v_m\}$ in K by $v_m = T_m u$ for $m \in \mathbb{N}$, where $T_m = T_m(modN)$. On the other hand,

$$d(v_m, x_{n_k}) \leq d(T_m u, T_m x_{n_k}) + d(T_m x_{n_k}, T_{m-1} x_{n_k}) + \dots + d(T_1 x_{n_k}, x_{n_k})$$

$$\leq d(u, x_{n_k}) + 2 \sum_{i=1}^m d(x_{n_k}, T_i x_{n_k}).$$

Therefore, we have

$$r(v_m, \{x_{n_k}\}) = \limsup_{k \to \infty} d(v_m, x_{n_k}) \le \limsup_{k \to \infty} d(u, x_{n_k}) = r(u, \{x_{n_k}\}),$$

which implies that $|r(v_m, \{x_{n_k}\}) - r(u, \{x_{n_k}\})| \to 0$ as $k \to \infty$. By Lemma 1.6, we have $T_{m(modN)}u = u$, so u is a common fixed point of $\{T_i\}$. By the same argument, we can show that u is a common fixed point of $\{S_i\}$ and $\{R_i\}$. Therefore, $u \in F$. Moreover, by Lemma 2.1, $\lim_{n \to \infty} d(x_n, u)$ exists.

Assume that $x \neq u$. By the uniqueness of the asymptotic center,

$$\begin{split} \limsup_{k \to \infty} d(x_{n_k}, u) &< \limsup_{k \to \infty} d(x_{n_k}, x) \\ &\leq \limsup_{n \to \infty} d(x_n, x) \\ &< \limsup_{n \to \infty} d(x_n, u) = \limsup_{k \to \infty} d(x_{n_k}, u), \end{split}$$

which is a contradiction, so x = u. Since $\{x_{n_k}\}$ is an arbitrary subsequence of $\{x_n\}$, $A(\{x_{n_k}\}) = \{x\}$ for all subsequences $\{x_{n_k}\}$ of $\{x_n\}$. This proves that $\{x_n\}$ Δ -converges to an element of F.

Remark 2.1. Lemma 2.1, Lemma 2.2 and Theorem 2.1 generalize Lemma 2.1, Lemma 2.2 and Theorem 2.3 in [1], respectively.

3. Strong Convergence Result

In this section, we establish a strong convergence of Algorithm 1.1.

Recall that a sequence $\{x_n\}$ in a metric space X is said to be Fejér monotone with respect to a subset K of X if $d(x_{n+1}, p) \leq d(x_n, p)$ for $p \in K$ and $n \in \mathbb{N}$.

Lemma 3.1 ([2]). Let K be a nonempty closed subset of a complete metric space (X,d) and let a sequence $\{x_n\}$ in X be Fejér monotone with respect to K. Then $\{x_n\}$ converges to some $p \in K$ if and only if $\lim_{n \to \infty} d(x_n, K) = 0$.

Definition 3.2. Three finite families $\{T_i\}, \{S_i\}, \{R_i\}(i \in \overline{1, N})$ of self-mappings on K are said to satisfy *condition* (\mathcal{A}) if there exists a non-decreasing function $f: [0, \infty) \to [0, \infty)$ with f(0) = 0 and f(t) > 0 for t > 0 such that

$$\max_{i \in \overline{1,N}} \{ d(x, S_i x) + d(x, T_i x) + d(x, R_i x) \} \ge f(d(x, F)) \text{ for } x \in K.$$

where $d(x, F) = \inf\{d(x, p) : p \in F\}.$

Now, we prove the following strong convergence result.

Theorem 3.3. Let K be a nonempty closed convex subset of a uniformly convex hyperbolic space X with a monotone modulus of uniform convexity η and $\{T_i\}$, $\{S_i\}$ and $\{R_i\}$ be three finite families of nonexpansive self-mappings on K satisfy the condition (A) with $F := (\bigcap_{i=1}^{N} F(T_i)) \bigcap (\bigcap_{i=1}^{N} F(S_i)) \bigcap (\bigcap_{i=1}^{N} F(R_i)) \neq \emptyset$. Suppose that $\{x_n\}$ is generated by Algorithm 1.1. Then a sequence $\{x_n\}$ in K converges strongly to an element of F.

Proof. By Lemma 2.1, $\lim_{n \to \infty} d(x_n, F)$ exists for $p \in F$ and from the Proof of Lemma 2.1, $\{x_n\}$ is Fejér monotone with respect to F. By Lemma 2.2, $\lim_{n \to \infty} d(x_n, T_i x_n) = \lim_{n \to \infty} d(x_n, S_i x_n) = \lim_{n \to \infty} d(x_n, R_i x_n) = 0$ for $i \in \overline{1, N}$. From the condition (\mathcal{A}) , we have

$$f(d(x_n, F)) \le \max_{i \in \overline{1,N}} \{ d(x, S_i x) + d(x, T_i x) + d(x, R_i x) \} \to 0 \text{ as } n \to \infty.$$

Since f is non-decreasing with f(0) = 0, we have $\lim_{n \to \infty} d(x_n, F) = 0$. Hence, from Lemma 3.1, $\{x_n\}$ converges strongly to an element of F.

Remark 3.1. Theorem 3.1 generalizes Theorem 4.5 in [5].

68

References

- S. Akbulut & B. Gunduz: Strong and Δ-convergence of a faster iteration process in hyperbolic space. Commun. Korean Math. Soc. **30** (2015), no. 3, 209-219.
- 2. H.H. Bauschke & P.L. Combettes: Convex Analysis and Monotone Operator Theory in Hilbert spaces. Springer-Verlag, New York, 2011.
- S. Dhompongsa & B. Panyanak: On Δ-convergence theorems in CAT(0)-spaces. Comput. Math. Appl. 56 (2008), no. 10, 2572-2579.
- A.R. Khan, H. Fukhar-ud-din & M.A.A. Khan: An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces. Fixed Point Theory Appl. 2012:54 (2012), 12 pages.
- S.H. Kim, M.K. Kang & B.S. Lee: Strong convergence and Δ-convergence in CAT(0)space in three-step iterative schemes with applications. Indian J. Math. 58 (2016), no. 1, 95-116.
- U. Kohlenbach: Some logical metatheorems with applications in functional analysis. Trans. Amer. Math. Soc. 357 (2005), no. 1, 89-128.
- L. Leustean: Nonexpansive iterations in uniformly convex W-hyperbolic spaces. In: Nonlinear Analysis and Optimization I: Nonlinear Analysis, 193-209, Contemp. Math. 513, Amer. Math. Soc. 2010.
- S. Reich & I. Shafrir: Nonexpansive iterations in hyperbolic spaces. Nonlinear Anal. 15 (1990), no. 6, 537-558.
- 9. G.S. Saluja: Strong and Δ -convergence of new three step iteration process in CAT(0) spaces. Nonlinear Analysis Forum **20** (2015), no. 1, 43-52.
- T. Shimizu & W. Takahashi: Fixed points of multivalued mappings in certain convex metric spaces. Topol. Methods Nonlinear Anal. 8 (1996), no. 1, 197-203.

^aDEPARTMENT OF MATHEMATICS, KYUNGSUNG UNIVERSITY, BUSAN 48434, REPUBLIC OF KOREA *Email address*: jiny0610@hotmail.com

^bDepartment of Mathematics, Dongeui University, Busan 47340, Republic of Korea *Email address:* mee@deu.ac.kr