DOI QR코드

DOI QR Code

Graphene Oxide Incorporated Antifouling Thin Film Composite Membrane for Application in Desalination and Clean Energy Harvesting Processes

해수담수화와 청정 에너지 하베스팅을 위한 산화 그래핀 결합 합성 폴리머 방오 멤브레인

  • Lee, Daewon (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
  • 이대원 (연세대학교 언더우드국제대학 융합과학공학부 에너지환경과학공학) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드국제대학 융합과학공학부 에너지환경과학공학)
  • Received : 2021.01.13
  • Accepted : 2021.01.21
  • Published : 2021.02.28

Abstract

Water supplies are decreasing in comparison to increasing clean water demands. Using nanofiltration is one of the most effective and economical methods to meet the need for clean water. Common methods for desalination are reverse osmosis and nanofiltration. However, pristine membranes lack the essential features which are, stability, economic efficiency, antibacterial and antifouling performances. To enhance the properties of the pristine membranes, graphene oxide (GO) is a promising and widely researched material for thin film composites (TFC) membrane due to their characteristics that help improve the hydrophilicity and anti-fouling properties. Modification of the membrane can be done on different layers. The thin film composite membranes are composed of three different layers, the top filtering active thin polyamide (PA) layer, supporting porous layer, and supporting fabric. Forward osmosis (FO) process is yet another energy efficient desalination process, but its efficiency is affected due to biofouling. Incorporation of GO enhance antibacterial properties leading to reduction of biofilm formation on the membrane surface. Pressure retarded osmosis (PRO) is an excellent process to generate clean energy from sea water and the biofouling of membrane is reduced by introduction of GO into the active layer of the TFC membrane. Different modifications on the membranes are being researched, each modification with its own advantages and disadvantages. In this review, modifications of nanofiltration membranes and their composites, characterization, and performances are discussed.

물 공급은 늘어나는 담수 수요와 다르게 줄어들고 있다. 담수의 수요를 충당하기 위해서 나노여과법은 가장 효율적이고 경제적인 방법이라고 할 수 있다. 해수담수화를 위한 나노여과법의 일반적인 방법으로는 나노여과 멤브레인을 이용한 역삼투압 방식이다. 하지만 기존의 멤브레인들은 주요 특성인 안정성, 경제성, 그리고 살균 및 방오특성이 부족하다. 기존의 나노여과 멤브레인을 향상시키기 위해서 친수성과 방오성이 높은 흑연 산화물이 가장 향상성이 높으며 널리 연구되고 있는 재료이다. 멤브레인 변형은 다른 레이어에 적용될 수 있다. 얇은 막으로 이루어진 멤브레인은 다른 세 레이어로 구성되어 있다, 표면의 폴리아미드 레이어, 기공 레이어, 그리고 전체적인 구조를 구성하는 지원 직물이다. 정삼투압 토한 에너지 효율적인 해수담수화 방식이지만 효율이 생물 오염 때문에 떨어진다. 산화그래핀 결합은 향균 기능을 향상할 수 있으며 멤브레인 표면에 바이오필름 생성을 억제할 수 있다. 압력지연삼투는 해수에서 청정에너지를 발전시키는 최고의 방법 중 하나이다. 멤브레인의 생물 오염은 합성 폴리머 멤브레인의 합성 레이어에 산화 그래핀을 합성하여 줄일 수 있다. 나노여과 멤브레인을 개량하는 여러 연구가 각자의 장단점을 가지고 이루어지고 있다. 이 보고서는 나노여과 멤브레인의 개량, 성질, 그리고 성능에 대해 논의한다.

Keywords

References

  1. N. Akther, A. Sodiq, A. Giwa, S. Daer, H. A. Arafat, and S. W. Hasan, "Recent advancements in forward osmosis desalination: A review", Chem. Eng. J., 281, 502 (2015). https://doi.org/10.1016/j.cej.2015.05.080
  2. R. Zhang, Y. Liu, M. He, Y. Su, X. Zhao, M. Elimelech, and Z. Jiang, "Antifouling membranes for sustainable water purification: Strategies and mechanisms", Chem. Soc. Rev., 45, 5888 (2016). https://doi.org/10.1039/c5cs00579e
  3. A. Anand, B. Unnikrishnan, J. Y. Mao, H. J. Lin, and C. C. Huang, "Graphene-based nanofiltration membranes for improving salt rejection, water flux and antifouling - A review", Desalination, 429, 119 (2018). https://doi.org/10.1016/j.desal.2017.12.012
  4. P. S. Goh and A. F. Ismail, "Graphene-based nanomaterial: The state-of-the-art material for cutting edge desalination technology", Desalination, 356, 115 (2015). https://doi.org/10.1016/j.desal.2014.10.001
  5. Q. Liu and G. R. Xu, "Graphene oxide (GO) as functional material in tailoring polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes", Desalination, 394, 162 (2016). https://doi.org/10.1016/j.desal.2016.05.017
  6. G. R. Xu, J. M. Xu, H. C. Su, X. Y. Liu, L. Lu, H. L. Zhao, H. J. Feng, and R. Das, "Two-dimensional (2D) nanoporous membranes with sub-nanopores in reverse osmosis desalination: Latest developments and future directions", Desalination, 451, 18 (2019). https://doi.org/10.1016/j.desal.2017.09.024
  7. R. S. Hebbar, A. M. Isloor, Inamuddin, and A. M. Asiri, "Carbon nanotube- and graphene-based advanced membrane materials for desalination", Environ. Chem. Lett., 15, 643 (2017). https://doi.org/10.1007/s10311-017-0653-z
  8. F. Perreault, M. E. Tousley, and M. Elimelech, "Thin-film composite polyamide membranes gunctionalized with biocidal graphene oxide nanosheets", Environ. Sci. Techno. Lett., 1, 71 (2013). https://doi.org/10.1021/ez4001356
  9. A. Soroush, W. Ma, Y. Silvino, and M. S. Rahaman, "Surface modification of thin film composite forward osmosis membrane by silver-decorated graphene-oxide nanosheets", Environ. Sci. Nano, 2, 395 (2015). https://doi.org/10.1039/C5EN00086F
  10. M. L. Lind, A. K. Ghosh, A. Jawor, X. Huang, W. Hou, Y. Yang, and E. M. V. Hoek, "Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes", Langmuir, 25, 10139 (2009). https://doi.org/10.1021/la900938x
  11. K. D. Woo, "Review on graphene oxide-based nanofiltration membrane", Membr. J., 29, 130 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.3.130
  12. S. H. Kim, Y. S. Kim, H. Y. Kim, S. M. Kim, and F. K. Jeong, "Solvent filtration performance of thin film composite membranes based on polyethersulfone support", Membr. J., 29, 348 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.6.348
  13. S. Kim and R. Patel, "Nanocomposite water treatment membranes: Antifouling prospective", Membr. J., 30, 158 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.3.158
  14. A. Kausar, "Phase inversion technique-based polyamide films and their applications: A comprehensive review", Polym.-Plast. Technol. Eng., 56, 1421 (2017). https://doi.org/10.1080/03602559.2016.1276593
  15. Y. Na, J. Lee, S. H. Lee, P. Kumar, J. H. Kim, and R. Patel, "Removal of heavy metals by polysaccharide: A review", Polym.-Plast. Technol. Mater., 1 (2020).
  16. A. Naz, R. Sattar, and M. Siddiq, "Polymer membranes for biofouling mitigation: A review", Polym. -Plast. Technol. Mater., 58, 1829 (2019). https://doi.org/10.1080/25740881.2019.1576200
  17. R. Patel, M. Patel, J.-S. Sung, and J. H. Kim, "Preparation and characterization of bioinert amphiphilic P(VDF-co-CTFE)-g-POEM graft copolymer", Polym.-Plast. Technol. Mater., 59, 1077 (2020). https://doi.org/10.1080/25740881.2020.1719143
  18. M. R. Esfahani, S. A. Aktij, Z. Dabaghian, M. D. Firouzjaei, A. Rahimpour, J. Eke, I. C. Escobar, M. Abolhassani, L. F. Greenlee, A. R. Esfahani, A. Sadmani, and N. Koutahzadeh, "Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications", Sep. Purif. Technol., 213, 465 (2019). https://doi.org/10.1016/j.seppur.2018.12.050
  19. L. Shi, J. Chen, L. Teng, L. Wang, G. Zhu, S. Liu, Z. Luo, X. Shi, Y. Wang, and L. Ren, "The antibacterial applications of graphene and its derivatives", Small, 12, 4165 (2016). https://doi.org/10.1002/smll.201601841
  20. H. R. Chae, J. Lee, C. H. Lee, I. C. Kim, and P. K. Park, "Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance", J. Membr. Sci., 483, 128 (2015). https://doi.org/10.1016/j.memsci.2015.02.045
  21. S. Kim, R. Ou, Y. Hu, X. Li, H. Zhang, G. P. Simon, and H. Wang, "Non-swelling graphene oxide-polymer nanocomposite membrane for reverse osmosis desalination", J. Membr. Sci., 562, 47 (2018). https://doi.org/10.1016/j.memsci.2018.05.029
  22. F. Shao, L. Dong, H. Dong, Q. Zhang, M. Zhao, L. Yu, B. Pang, and Y. Chen, "Graphene oxide modified polyamide reverse osmosis membranes with enhanced chlorine resistance", J. Membr. Sci., 525, 9 (2017). https://doi.org/10.1016/j.memsci.2016.12.001
  23. H. Croll, A. Soroush, M. E. Pillsbury, and S. Romero-Vargas Castrillon, "Graphene oxide surface modification of polyamide reverse osmosis membranes for improved N-nitrosodimethylamine (NDMA) removal", Sep. Purif. Technol., 210, 973 (2019). https://doi.org/10.1016/j.seppur.2018.08.070
  24. S. Bano, A. Mahmood, S. J. Kim, and K. H. Lee, "Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties", J. Mater. Chem. A, 3, 2065 (2015). https://doi.org/10.1039/C4TA03607G
  25. G. S. Lai, W. J. Lau. P. S. Goh, A. F, Ismail, N. Yusof, and Y. H. Tan, "Graphene oxide incorporated thin film nanocomposite nanofiltration membrane for enhanced salt removal performance", Desalination, 387, 14 (2016). https://doi.org/10.1016/j.desal.2016.03.007
  26. J. Wang, X. Gao, H. Yu, Q. Wang, Z. Ma, Z. Li, Y. Zhang, and C. Gao, "Accessing of graphene oxide (GO) nanofiltration membranes for microbial and fouling resistance", Sep. Purif. Technol., 215, 91 (2019). https://doi.org/10.1016/j.seppur.2019.01.018
  27. T. Wang, J. Lu, L. Mao, and Z. Wang, "Electric field assisted layer-by-layer assembly of graphene oxide containing nanofiltration membrane", J. Membr. Sci., 515, 125 (2016). https://doi.org/10.1016/j.memsci.2016.05.053
  28. Y. C. Wang, S. R. Kumar, C. M. Shih, W. S. Hung, Q. F. An, H. C. Hsu, S. H. Huang, and S. J. Lue, "High permeance nanofiltration thin film composites with a polyelectrolyte complex top layer containing graphene oxide nanosheets", J. Membr. Sci., 540, 391 (2017). https://doi.org/10.1016/j.memsci.2017.06.074
  29. H. M. Hegab, A. ElMekawy, T. G. Barclay, A. Michelmore, L. Zou, C. P. Saint, and M. GinicMarkovic, "Single-step assembly of multifunctional poly(tannic acid)-graphene oxide coating to reduce biofouling of forward osmosis membranes", ACS Appl. Mater. Interfaces, 8, 17519 (2016). https://doi.org/10.1021/acsami.6b03719
  30. M. J. Park, S. Phuntsho, T. He, G. M. Nisola, L. D. Tijing, X. M. Li, G. Chen, W. J. Chung, and H. K. Shon, "Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes", J. Membr. Sci., 493, 496 (2015). https://doi.org/10.1016/j.memsci.2015.06.053
  31. M. Hu, S. Zheng, and B. Mi, "Organic fouling of graphene oxide membranes and its implications for membrane fouling control in engineered osmosis", Environ. Sci. Technol., 50, 685 (2016). https://doi.org/10.1021/acs.est.5b03916
  32. X. Huang, K. L. Marsh, B. T. McVerry, E. M. V. Hoek, and R. B. Kaner, "Low-fouling antibacterial reverse osmosis membranes via surface grafting of graphene oxide", ACS Appl. Mater. Interfaces, 8, 14334 (2016). https://doi.org/10.1021/acsami.6b05293
  33. H. J. Kim, Y. S. Choi, M. Y. Lim, K. H. Jung, D. G. Kim, J. J. Kim, H. Kang, and J. C. Lee, "Reverse osmosis nanocomposite membranes containing graphene oxides coated by tannic acid with chlorine-tolerant and antimicrobial properties", J. Membr. Sci., 514, 25 (2016). https://doi.org/10.1016/j.memsci.2016.04.026
  34. F. Shao, C. Xu, W. Ji, H. Dong, Q. Sun, L. Yu, and L. Dong, "Layer-by-layer self-assembly TiO2 and graphene oxide on polyamide reverse osmosis membranes with improved membrane durability", Desalination, 423, 21 (2017). https://doi.org/10.1016/j.desal.2017.09.007
  35. H. Abadikhah, E. Naderi Kalali, S. Khodi, X. Xu, and S. Agathopoulos, "Multifunctional thin-film nanofiltration membrane incorporated with reduced graphene oxide@TiO2@Ag nanocomposites for high desalination performance, dye retention, and antibacterial properties", ACS Appl. Mater. Interfaces, 11, 23535 (2019). https://doi.org/10.1021/acsami.9b03557
  36. B. Lee, D. W. Suh, S. P. Hong, and J. Yoon, "A surface-modified EDTA-reduced graphene oxide membrane for nanofiltration and anti-biofouling prepared by plasma post-treatment", Environ. Sci. Nano, 6, 2292 (2019). https://doi.org/10.1039/C8EN01400K
  37. X. Li, C. Zhao, M. Yang, B. Yang, D. Hou, and T. Wang, "Reduced graphene oxide-NH2 modified low pressure nanofiltration composite hollow fiber membranes with improved water flux and antifouling capabilities", Appl. Surf. Sci., 419, 418 (2017). https://doi.org/10.1016/j.apsusc.2017.04.080
  38. J. M. Luque-Alled, A. Abdel-Karim, M. Alberto, S. Leaper, M. Perez-Page, K. Huang, A. Vijayaraghavan, A. S. El-Kalliny, S. M. Holmes, and P. Gorgojo, "Polyethersulfone membranes: From ultrafiltration to nanofiltration via the incorporation of APTS functionalized-graphene oxide", Sep. Purif. Technol., 230, 115836 (2020). https://doi.org/10.1016/j.seppur.2019.115836
  39. J. Zhu, J. Wang, A. A. Uliana, M. Tian, Y. Zhang, Y. Zhang, A. Volodin, K. Simoens, S. Yuan, J. Li, J. Lin, K. Bernaerts, and B. Van Der Bruggen, "Mussel-inspired architecture of high-flux loose nanofiltration membrane functionalized with antibacterial reduced graphene oxide-copper nanocomposites", ACS Appl. Mater. Interfaces, 9, 28990 (2017). https://doi.org/10.1021/acsami.7b05930
  40. F. Perreault, H. Jaramillo, M. Xie, M. Ude, L. D. Nghiem, and M. Elimelech, "Biofouling mitigation in forward osmosis using graphene oxide functionalized thin-film composite membranes", Environ. Sci. Technol., 50, 5840 (2016). https://doi.org/10.1021/acs.est.5b06364