DOI QR코드

DOI QR Code

XOR Gate Based Quantum-Dot Cellular Automata T Flip-flop Using Cell Interaction

셀 간 상호작용을 이용한 XOR 게이트 기반의 양자점 셀룰러 오토마타 T 플립플롭

  • 유찬영 (금오공과대학교 컴퓨터공학과) ;
  • 전준철 (금오공과대학교 컴퓨터공학과)
  • Received : 2020.12.09
  • Accepted : 2021.01.11
  • Published : 2021.02.28

Abstract

Quantum-Dot Cellular Automata is a next-generation nanocircular design technology that is drawing attention from many research organizations not only because it is possible to design efficient circuits by overcoming the physical size limitations of existing CMOS circuits, but also because of its energy-efficient features. In this paper, one of the existing digital circuits, T flip-flop circuit, is proposed using QCA. The previously proposed T flip-flops are designed based on the majority gate, so the circuits are complex and have long delays. Therefore, the design of the XOR gate-based T flip-flop using cell interaction reduces circuit complexity and minimizes latency. The proposed circuit is simulated using QCADesigner, and the performance is compared and analyzed with the existing proposed circuits.

양자점 셀룰라 오토마타(Quantum-Dot Cellular Automata)는 기존의 CMOS 회로의 물리적 크기 한계를 극복하여 효율적인 회로 설계가 가능할 뿐만 아니라 에너지 효율이 우수한 특징 때문에 많은 연구 단체에서 주목받고 있는 차세대 나노 회로 설계기술이다. 본 논문에서는 QCA를 이용하여 기존 디지털 회로 중 하나인 T 플립플롭 회로를 제안한다. 기존에 제안되었던 T 플립플롭들은 다수결게이트를 기반으로 설계되었기 때문에 회로가 복잡하며 지연시간이 길다. 따라서 다수결게이트를 최소화시키며, 셀 간 상호작용을 이용한 XOR 게이트 기반의 T 플립플롭을 설계함으로써 회로의 복잡도를 줄이고, 지연시간을 최소화한다. 제안하는 회로는 QCADesigner를 사용하여 시뮬레이션을 진행하며, 기존에 제안된 회로들과 성능을 비교 및 분석한다.

Keywords

References

  1. D. Kumpanya and S. Thaiparnat, "Real Time Electrical Energy Computing Tool," International Journal of Advanced Culture Technology, Vol. 3, No. 1, pp. 113-119, Jun. 2015. https://doi.org/10.17703/IJACT.2015.3.1.113
  2. N. Safoev and J. C. Jeon, "A Novel Controllable Inverter and Adder/Subtractor in Quantum-Dot Cellular Automata Using Cell Interaction Based XOR Gate," Microelectronic Engineering, Vol. 222, Feb. 2020.
  3. S. Erniyazov and J. C. Jeon, "Carry Save Adder and Carry Look Ahead Adder Using Inverter Chain based Coplanar QCA Full Adder For Low Energy Dissipation," Microelectronic Engineering, Vol. 211, pp. 37-43, Apr. 2019. https://doi.org/10.1016/j.mee.2019.03.015
  4. C. S. Lent, P. D. Tougaw, and W. Porod, "Quantum Cellular Automata: The Physics of Computing with Arrays of Quantum dot Molecules," Proceedings Workshop on Physics and Computation, Vol. 73, pp. 5-13, Nov. 1994.
  5. W. Y. Jang and J. C. Jeon, "Multi-Layer QCA 4-to-1 Multiplexer Design with Multi-Directional Input," The Journal of Convergence on Culture Technology, Vol. 6, No. 2, pp. 819-824, Nov. 2020.
  6. C. Y. Yu and J. C. Jeon, "XOR Gate based QCA T Flip-flop Design Using Cell Interaction," Proceedings of 2020 Multi-conference of IIBC, pp. 35-38, Nov. 2020.
  7. M. R. Beigh, M. Mustafa, and F. Ahmad, "Performance Evaluation of Efficient XOR Structures in Quantum-Dot Cellular Automata (QCA)," Circuits and Systems, Vol. 4 No. 2, 2013.
  8. G. Singh, R. K. Sarin, and B. Raj, "A Novel Robust Exclusive-OR Function Implementation in QCA Nanotechnology with Energy Dissipation Analysis," Journal of Computational Electronics, Vol. 15, No. 2, pp. 455-465, Mar. 2016. https://doi.org/10.1007/s10825-016-0804-7
  9. N. Safoev and J. C. Jeon, "Design of High-performance QCA Incrementer/Decrementer Circuit based on Adder/Subtractor Methodology," Microprocessors and Microsystems, Vol. 72, p. 102927, Feb. 2020. https://doi.org/10.1016/j.micpro.2019.102927
  10. J. C. Jeon, "Designing Nanotechnology QCA-Multiplexer Using Majority Function-based NAND for Quantum Computing," The Journal of Supercomputing, Vol. 77, No. 2, pp.1562-1578, May 2020. https://doi.org/10.1007/s11227-020-03341-8
  11. Y. W. You and J. C. Jeon, "Two Dimensional QCA XOR Logic Using NNI Gate," International Journal of Control and Automation, Vol. 10, pp. 217-226, May 2016.
  12. J. C. Jeon, "Low Complexity QCA Universal Shift Register Design Using Multiplexer and D Flip-flop Based on Electronic Correlations," The Journal of Supercomputing, Vol. 76, No. 8, pp. 6438-6452, Aug. 2019. https://doi.org/10.1007/s11227-019-02962-y
  13. A. Vetteth, K. Walus, and V. S. Dimitrov, "Quantum-dot Cellular Automata of Flip Flops," 2012 IEEE International Conference on Circuits and Systems (ICCAS), 2002.
  14. A. H. Majeed et al., "Synchronous Counter Design Using Novel Level Sensitive T-FF in QCA Technology," Journal of Low Power Electronics and Applications, Vol. 9, No. 3, Sep. 2019, Online published. https://doi.org/10.3390/jlpea9030027
  15. D. K. Seo and J. C. Jeon, "Design of QCA Based T Flip-Flop Using Multiplexer," Korean Institute of Information Technology, pp. 187-188, Jun. 2019.
  16. S. Pandey, S. Singh, and S. Wairya, "Designing an Efficient Approach for JK and T Flip-Flop with Power Dissipation Analysis Using QCA," International Journal of VLSI Design & Communication Systems, Vol. 7, No. 3, pp. 29-48, Jun. 2016.
  17. N. Safoev and J. C. Jeon, "Design and Evaluation of Cell Interaction Based Vedic Multiplier Using Quantum-Dot Cellular Automata," Electronics, Vol. 9, No. 6, p. 1036, Jun. 2020. https://doi.org/10.3390/electronics9061036