DOI QR코드

DOI QR Code

Proposal of autonomous take-off drone algorithm using deep learning

딥러닝을 이용한 자율 이륙 드론 알고리즘 제안

  • Lee, Jong-Gu (School of Computer Inf. & Comm., Kunsan National University) ;
  • Jang, Min-Seok (School of Computer Inf. & Comm., Kunsan National University) ;
  • Lee, Yon-Sik (School of Computer Inf. & Comm., Kunsan National University)
  • Received : 2020.11.23
  • Accepted : 2021.01.08
  • Published : 2021.02.28

Abstract

This study proposes a system for take-off in a forest or similar complex environment using an object detector. In the simulator, a raspberry pi is mounted on a quadcopter with a length of 550mm between motors on a diagonal line, and the experiment is conducted based on edge computing. As for the images to be used for learning, about 150 images of 640⁎480 size were obtained by selecting three points inside Kunsan University, and then converting them to black and white, and pre-processing the binarization by placing a boundary value of 127. After that, we trained the SSD_Inception model. In the simulation, as a result of the experiment of taking off the drone through the model trained with the verification image as an input, a trajectory similar to the takeoff was drawn using the label.

본 연구는 객체 검출기를 이용하여 숲 혹은 그에 준하는 복잡한 환경에서의 이륙에 대한 시스템을 제안한다. 시뮬레이터에서 대각선상의 모터간 550mm의 길이를 갖는 쿼드콥터에 라즈베리파이를 장착하여 엣지 컴퓨팅 기반으로 실험을 진행한다. 학습에 사용될 이미지는 군산대학교 내부의 세 지점을 선정하여 640⁎480 사이즈의 이미지를 150장 내외 정도 획득하였으며, 이들을 흑백으로 변환한 다음, 127의 경계값을 두어 이진화 전처리를 하였다. 이후 SSD_Inception 모델을 학습 하였다. 시뮬레이션상에서 검증용 영상을 입력으로 학습한 모델을 통해 드론을 이륙시키는 실험 결과, 라벨을 이용하여 이륙했을 때와 유사한 궤적을 그려내었다.

Keywords

References

  1. H. Shakhatreh, A. H. Sawalmeh, A. AI-Fuqaha, Z. Dou, E. Almaita, I. Khalil, N. S. Othman, A. Khreishah, and M. Guizani, "Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges," IEEE Access, vol. 7, pp. 48572-48634, 2019. https://doi.org/10.1109/access.2019.2909530
  2. J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, C. Wang, and Y. Liu, "A survey of machine learning techniques applied to software defined networking (SDN): Research issues and challenges," IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 393-430, 2018.
  3. N. Smolyanskiy, A. Kamenev, J. Smith, and S. Birchfield, "Toward low-flying autonomous MAV trail navigation using deep neural networks for environmental awareness," in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, pp. 4241-4247, Sep. 2017.
  4. A. Loquercio, A. I. Maqueda, C. R. Del-Blanco, and D. Scaramuzza, "Dronet: Learning to fly by driving," IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 1088-1095, Apr. 2018. https://doi.org/10.1109/lra.2018.2795643
  5. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, "Rethinking the inception architecture for computer vision," in Proc. of the IEEE Conf. on computer vision and pattern recognition, Las Vegas, U.S.A, pp. 2818-2826, Jun. 2016.
  6. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C. Berg, "Ssd: Single shot multibox detector," in European Conf. on computer vision, Springer, Cham, pp. 21-37, Sep. 2016.
  7. L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys, "Pixhawk: A system for autonomous flight using onboard computer vision," in IEEE Int. Conf. on Robotics and Automation, Shanghai, China, pp. 2992-2997, May. 2011.
  8. W. Qian, Z. Xia, J. Xiong, Y. Gan, Y. Guo, S. Weng, H. Deng, Y. Hu, and J. Zhang, "Manipulation task simulation using ROS and Gazebo," in IEEE Int. Conf. on Robotics and Biomimetics (ROBIO), Bali, Indonesia, pp. 2594-2598, Apr. 2014.
  9. A. Koubaa, A. Allouch, M. Alajlan, Y. Javed, A. Belghith, and M. Khalgui, "Micro air vehicle link (mavlink) in a nutshell: A survey," IEEE Access, vol. 7, pp. 87658-87680, 2019. https://doi.org/10.1109/access.2019.2924410