DOI QR코드

DOI QR Code

A Study on the Reduction of Flooding in Oncheon-Cheon through the Connection between Oncheon-Cheon and Hoedong-Reservoir Considering GIS

GIS를 고려한 온천천-회동저수지 연계를 통한 온천천 침수 저감 방안에 관한 연구

  • Choo, Yeonmoon (Research Institute of Industrial Technology, Pusan National University) ;
  • Choe, Yeonwoong (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Choo, Taiho (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Jeon, Kunhak (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Jeon, Haesung (Research Institute of Industrial Technology, Pusan National University)
  • 추연문 (부산대학교 생산기술연구소) ;
  • 최연웅 (부산대학교 사회환경시스템공학과) ;
  • 추태호 (부산대학교 사회환경시스템공학과) ;
  • 전근학 (부산대학교 사회환경시스템공학과) ;
  • 전해성 (부산대학교 생산기술연구소)
  • Received : 2020.10.08
  • Accepted : 2020.12.31
  • Published : 2021.02.28

Abstract

The average annual rainfall in Busan to increase, and in case of Oncheon-Chen in Busan, frequent flooding occurred frequently. The middle and lower reaches of the Oncheon-Chen are relatively flat and urban areas are developed. Therefore, due to the frequent flooding of rivers and the large flood damage, a method of effectively eliminating the flow rate of Oncheon-Chen in the event of heavy rain is needed. In this study, underground waterway was established in the east of Hoedong-Reservoir as a measure to reduce floods in hot springs and simulated with EPA-SWMM. The information needed to construct the basin was utilized by GIS. In middle part of the Suyeong-Gang, there is a Hoedong-Reservoir and a dam is installed and has better conditions than the Nakdong-Gang. It also analyzed the effect of the Oncheon-Chen flow through the underground waterway on the Suyeong-Gang when it was transferred to the Hoedong-Reservoir. It was analyzed that the flood reduction rate at the flood risk points set up in this study was reduced by 24.64% on average when the underground waterway was installed, and the inflow of the water into the Suyeong-Gang increased by 1% on average when the flow rate was excluded by the Suyeong-Gang.

부산지역의 연평균 강우량은 지속적으로 증가하고 있으며 부산광역시 소재 온천천의 경우는 자주 상습침수가 발생하였다. 온천천의 지형적 특징으로 중·하류부는 비교적 평탄하며 도심지가 발달하였다. 따라서 이상호우 시 하천 범람이 잦고 침수피해가 크기 때문에 이상호우 시 온천천의 유량을 효과적으로 배제할 방법이 필요하다. 본 연구에서는 온천천의 홍수저감 대책으로 동쪽에 위치한 회동저수지로 지하수로를 구축하였으며 EPA-SWMM으로 모의 분석하였다. 유역구성 시 필요한 정보들은 GIS를 활용하였다. 수영강 중류부에 회동저수지가 있으며 댐이 설치되어있다. 지하수로를 구축하여 온천천의 침수저감률을 분석하였으며 지하수로를 통한 온천천의 유량이 회동저수지로 넘어갔을 시 수영강에 미치는 영향도 분석하였다. 본 연구에서 설정한 침수위험지점에 대한 침수저감률은 지하수로를 설치하였을 때 평균적으로 24.64%가 저감되는 것으로 분석 되었으며 수영강으로 유량 배제 시 수영강에는 평균적으로 1% 유입량이 늘어났기 때문에 밀집한 도심지의 경우에 시민의 생명과 재산을 상당히 보호할 수 있을 것으로 판단되고 본 연구에서 제안하는 지하수로의 효용성이 있다고 사료된다.

Keywords

References

  1. Agarwal, S, Kumar, S(2019). Applicability of SWMM for semi urban catchment flood modeling using extreme rainfall events, International J. of Recent Technology and Engineering, 8(2), pp. 245-251. [DOI: 10.35940/ijrte.A3169.078219]
  2. Ahamed, SMF, Agarwal, S(2019). Urban flood modeling and management using SWMM for new R.R. Pet region, Vijayawada, India, International J. of Recent Technology and Engineering, 7(6C2), pp. 317-322.
  3. Babaei, S, Ghazavi, R, Erfanian, M(2018). Urban flood simulation and prioritization of critical urban sub-catchments using SWMM model and PROMETHEE II approach, Physics and Chemistry of the Earth, 105, pp. 3-11. [DOI:https://doi.org/10.1016/j.pce.2018.02.002]
  4. Barco1, J, Kenneth, M, Wong, Stenstrom, MK(2008), Automatic calibration of the U.S. EPA SWMM model for a large urban catchment, J. of Hydraulic Engineering, 134(4), pp. 466-474. [DOI:https://doi.org/10.1061/(ASCE)0733-9429(2008)134:4(466)]
  5. Campbell, CW, Sullivan, SM(2002). Simulating time-varying cave flow and water levels using the Storm Water Management Model, Engineering Geology, 65(2-3), pp. 133-139. [DOI:https://doi.org/10.1016/S0013-7952(01)00120-X]
  6. El-Sharif, A, Hansen, D(2001). Application of SWMM to the flooding problem in Truro, Nova Scotia, Canadian Water Resources Journal, 26(4), pp. 439-459. [DOI:https://doi.org/10.4296/cwrj2604439]
  7. Jang, SH, Cho, MO, Yoon, JY. Yoon, YN, Kim, SD, Kim, GH, Kim, LH, Aksoy, H(2007). Using SWMM as a tool for hydrologic impact assessment, Desalination, 212(1-3), pp. 344-356. [DOI:https://doi.org/10.1016/j.desal.2007.05.005]
  8. Jang, SJ(2009). A study on the proper size of rainwater stored tank in submerged districts using SWMM program, J. of the Korean Housing Association, 20(3), pp. 69-76. [Korean Literature]
  9. Ji, S, Qiuwen, Z(2015). A GIS-based subcatchments division approach for SWMM, The Open Civil Engineering Journal, 9, pp. 515-521. [DOI:https://doi.org/10.2174/1874149501509010515]
  10. Jiang, L, Chen, Y, Wang, H(2015). Urban flood simulation based on the SWMM model, Proceedings RSHS14 and ICGRHWE14, IAHS, Guangzhou, China, pp. 186-191. [DOI : https://doi.org/10.5194/piahs-368-186-2015]
  11. Junaidi, A, Ermalizar, LM(2018). Flood simulation using EPA SWMM 5.1 on small catchment urban drainage system" International Conference on Disaster Management, ICDM, Padang, Indonesia, 229. [DOI:https://doi.org/10.1051/matecconf/201822904022]
  12. Kim, JS, Lee, WH(2015). Flood inundation analysis in urban area using XP-SWMM, J. of the Korean Geoenvironmental Society, 16(1), pp. 29-36. [DOI:https://doi.org/10.14481/jkges.2015.16.1.29] [Korean Literature]
  13. Lee, JH, Song, YH, Jo, DJ(2013). Determination of optimal locations of urban subsurface storage considering SWMM parameter sensitivity, J. of KOSHAM, 13(4), pp. 295-301, [DOI:https://doi.org/10.9798/KOSHAM.2013.13.4.295] [Korean Literature]
  14. Ministry of Land, Transport and Maritime Affairs (2011) A Study on the Improvement and Complementation of Probabilistic Rainfall, 11-1611000-001995-01.
  15. Pathirana1, A, Tsegaye, S, Gersonius1, B, Vairavamoorthy, K(2011). A simple 2-D inundation model for incorporating flood damage in urban drainage planning, Hydrol. Earth Syst, 15, pp. 2747-2761. [DOI:https://doi.org/10.5194/hess-15-2747-2011]
  16. Rai, PK, Chahar, BR, Dhanya, CT(2017). GIS-based SWMM model for simulating the catchment response to flood events, Hydrology Research, 48(2), pp. 384-394. [DOI:https://doi.org/10.2166/nh.2016.260]
  17. Shin, DS, Park, JB, Kang, DK, Jo, DJ(2013). An analysis of runoff mitigation effect using SWMMLID model for frequently inundated basin, J. of KOSHAM, 13(4), pp. 303-309. [DOI:https://doi.org/10.9798/KOSHAM.2013.13.4.303] [Korean Literature]