DOI QR코드

DOI QR Code

Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory

  • Atmane, Redhwane Ait (Laboratoire Genie Industriel et Developpement Durable, Faculty of Technology, University of Relizane) ;
  • Mahmoudi, Noureddine (Department of Mechanical Engineering, University of Saida) ;
  • Bennai, Riadh (Department of civil engineering, Faculty of civil engineering and architecture, University of Hassiba Benbouali of Chlef) ;
  • Atmane, Hassen Ait (Department of civil engineering, Faculty of civil engineering and architecture, University of Hassiba Benbouali of Chlef) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
  • Received : 2020.06.29
  • Accepted : 2021.03.04
  • Published : 2021.04.10

Abstract

In this work, the dynamic response of functionally graded beams on variable elastic foundations is studied using a novel higher-order shear deformation theory (HSDT). Unlike the conventional HSDT, the present one has a new displacement field which introduces undetermined integral variables. The FG beams were assumed to be supported on Winkler-Pasternak type foundations in which the Winkler modulus is supposed to be variable in the length of the beam. The variable rigidity of the elastic foundation is assumed to be linear, parabolic and sinusoidal along the length of the beam. The material properties of the FG porous beam vary according to a power law distribution in terms of the volume fraction of the constituents. The equations of motion are determined using the virtual working principle. For the analytical solution, Navier method is used to solve the governing equations for simply supported porous FG beams. Numerical results of the present theory for the free vibration of FG beams resting on elastic foundations are presented and compared to existing solutions in the literature. A parametric study will be detailed to investigate the effects of several parameters such as gradient index, thickness ratio, porosity factor and foundation parameters on the frequency response of porous FG beams.

Keywords

References

  1. Abdelrahman, A.A., Abd-El-Mottaleb, H.E. and Eltaher, M.A. (2020), "On bending analysis of perforated microbeams including the microstructure effects", Struct. Eng. Mech., 76(6), 765-779. http://dx.doi.org/10.12989/sem.2020.76.6.765.
  2. Abdelrahman, W.G. (2020), "Effect of material transverse distribution profile on buckling of thick functionally graded material plates according to TSDT", Struct. Eng. Mech., 74(1), 83-90. https://doi.org/10.12989/SEM.2020.74.1.083.
  3. Abdul Kareem, Z A. and Ibraheem Majeed, W. (2020), "Effect of boundary conditions on harmonic response of laminated plates", Compos. Mater. Eng., 2(2), 125-140. https://doi.org/10.12989/cme.2020.2.2.125.
  4. Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.
  5. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  6. Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369.
  7. Akavci, S.S. (2015), "An efficient shear deformation theory for free vibration of functionally graded thick rectangular plates on elastic foundation", Compos. Struct., 108, 667-676. https://doi.org/10.1016/j.compstruct.2013.10.019.
  8. Akbas, S.D. (2017), "Thermal Effects on the Vibration of Functionally Graded Deep Beams with Porosity", Int. J. Appl. Mech., 9(5), 1750076. https://doi.org/10.1142/S1758825117500764.
  9. Al-shujairi, M. and Mollamahmutoglu, C. (2018), "Buckling and free vibration analysis of functionally graded sandwich microbeams resting on elastic foundation by using nonlocal strain gradient theory in conjunction with higher order shear theories under thermal effect", Compos. Part B: Eng., 154, 292-312. https://doi.org/10.1016/j.compositesb.2018.08.103.
  10. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  11. Ayache, B., Bennai, R., Fahsi, B., Fourn, H., Ait Atmane, H. and Tounsi, A. (2018), "Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory", Earthq. Struct., 15(4), 369-382. https://doi.org/10.12989/eas.2018.15.4.369.
  12. Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  13. Benferhat, R., Daouadji, T.H. and Mansour, M.S. (2016), "Free vibration analysis of FG plates resting on an elastic foundation and based on the neutral surface concept using higher-order shear deformation theory", Comptes Rendus Mecanique., 344(9), 631-641. https://doi.org/10.1016/j.crme.2016.03.002.
  14. Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. http://dx.doi.org/10.12989/scs.2015.19.3.521.
  15. Bennai, R., Atmane, H.A., Ayache, B., Tounsi, A., Bedia, E.A.A., Al-Osta, M.A. (2019a), "Free vibration response of functionally graded Porous plates using a higher-order Shear and normal deformation theory", Earthq. Struct., 16(5), 547-561. https://doi.org/10.12989/eas.2019.16.5.547.
  16. Bennai, R., Fourn, H., Atmane, H.A., Tounsi, A., Bessaim, A. (2019b), "Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory", Wind Struct., 28(1), 49-62. https://doi.org/10.12989/was.2019.28.1.049.
  17. Bensattalah, T., Bouakkaz, K., Zidour, M., Daouadji, T.H. (2019b), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., 6(4), 339. https://doi.org/10.12989/anr.2018.6.4.339.
  18. Bensattalah, T., Zidour, M and Daouadji, T.H. (2019a), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng., 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021.
  19. Chen, X., Lu, Y. and Li, Y (2019b), "Free vibration, buckling and dynamic stability of bi-directional FG microbeam with a variable length scale parameter embedded in elastic medium", Appl. Math. Model., 67, 430-448. https://doi.org/10.1016/j.apm.2018.11.004.
  20. Chen, X., Zhang X., Lu, Y. and Li, Y. (2019c), "Static and dynamic analysis of the postbuckling of bi-directional functionally graded material microbeams", Int. J. Mech. Sci., 151, 424-443. https://doi.org/10.1016/j.ijmecsci.2018.12.001.
  21. Chen, X., Lu, Y., Zhu, B., Zhang, X. and Li, Y. (2019a), "Nonlinear resonant behaviors of bi-directional functionally graded material microbeams: One-/two-parameter bifurcation analyses", Compos. Struct., 223, 110896. https://doi.org/10.1016/j.compstruct.2019.110896.
  22. Chikh, A. (2020), "Investigations in static response and free vibration of a functionally graded beam resting on elastic foundations", Frattura ed Integrita Strutturale., 14(51), 115-126. https://doi.org/10.3221/IGF-ESIS.51.09.
  23. Civalek, O., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2020), "Vibration Analysis of Carbon Nanotube-Reinforced Composite Microbeams", Math. Method Appl. Sci., https://doi.org/10.1002/mma.7069.
  24. Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2020), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
  25. Dehsaraji, M.L., Saidi, A.R. and Mohammadi, M. (2020), "Bending analysis of thick functionally graded piezoelectric rectangular plates using higher-order shear and normal deformable plate theory", Struct. Eng. Mech., 73(3), 259-269. https://doi.org/10.12989/sem.2020.73.3.259.
  26. Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A., Hadi, A. (2020), "Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates", Adv. Nano Res., 8(2), 115-134. https://doi.org/10.12989/anr.2020.8.2.115.
  27. Duc, N.D., Lee, J., Nguyen-Thoi, T. and Thang, P.T. (2017), "Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler-Pasternak elastic foundations", Aerosp. Sci. Technol., 68, 391-402. https://doi.org/10.1016/j.ast.2017.05.032.
  28. Ebrahimi, F. and Jafari, A. (2016), "Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory", Struct. Eng. Mech., 59(2), 343-371. https://doi.org/10.12989/sem.2016.59.2.343.
  29. Ebrahimi, F., Karimiasl, M. and Selvamani, R. (2020), "Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading", Adv. Nano Res., 8(3), 203-214. https://doi.org/10.12989/anr.2020.8.3.203.
  30. Eltaher, M.A. and Akbas, S.D. (2020), "Transient response of 2D functionally graded beam structure", Struct. Eng. Mech., 75(3), 357-367. https://doi.org/10.12989/sem.2020.75.3.357.
  31. Eyvazian, A., Hamouda, A.M., Tarlochan, F., Mohsenizadeh, S., and Dastjerdi, A.A. (2019), "Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core", Steel Compos. Struct., 33(6), 891-906. http://dx.doi.org/10.12989/scs.2019.33.6.891.
  32. Eyvazian, A., Musharavati, F., Talebizadehsardari, P. and Sebaey, A.T., (2020), "Free vibration of FG-GPLRC spherical shell on two parameter elastic foundation", Steel Compos. Struct., 36(6), 711-727. http://dx.doi.org/10.12989/scs.2020.36.6.711.
  33. Ghandourh, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36(3), 293-305. https://doi.org/10.12989/scs.2020.36.3.293.
  34. Gupta, A. and Talha, M. (2017), "Nonlinear flexural and vibration response of geometrically imperfect gradient plates using hyperbolic higher-order shear and normal deformation theory", Compos. Part B: Eng., 123, 241-261. https://doi.org/10.1016/j.compositesb.2017.05.010.
  35. Gupta, A., Talha, M. and Chaudhari, V.K. (2016), "Natural frequency of functionally graded plates resting on elastic foundation using finite element method", Procedia Technol., 23, 163-170. https://doi.org/10.1016/j.protcy.2016.03.013.
  36. Hadji, L. and Bernard, F. (2020), "Bending and free vibration analysis of functionally graded beams on elastic foundations with analytical validation", Adv. Mater. Res., 9(1), 63-98, https://doi.org/10.12989/amr.2020.9.1.063.
  37. Hamed, M.A., Mohamed, S.A. and Eltaher, M.A, (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.
  38. Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
  39. Ibnorachid, Z., Boutahar, L., EL Bikri, K. and Benamar, R. (2019), "Buckling Temperature and Natural Frequencies of Thick Porous Functionally Graded Beams Resting on Elastic Foundation in a Thermal Environment", Adv. Acoust. Vib., 7986569. https://doi.org/10.1155/2019/7986569.
  40. Jalaei, M. and Civalek, O. (2019), "On dynamic instability of magnetically embedded visco elastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32, 2019. https://doi.org/10.1016/j.ijengsci.2019.06.013.
  41. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2017), "Effect of different temperature load on thermal postbuckling behaviour of functionally graded shallow curved shell panels", Compos. Struct., 160, 1236-1247. https://doi.org/10.1016/j.compstruct.2016.10.125.
  42. Karami, B. and Janghorban, M. (2019), "On the dynamics of porous nanotubes with variable material properties and variable thickness", Int. J. Eng. Sci., 136, 53-66. https://doi.org/10.1016/j.ijengsci.2019.01.002
  43. Karami, B., Shahsavari, D. and Janghorban, M. (2019), "On the dynamics of porous doubly-curved nanoshells", Int. J. Eng. Sci., 143, 39-55. https://doi.org/10.1016/j.ijengsci.2019.06.014.
  44. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B, 28, 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
  45. Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.
  46. Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.
  47. Li, M., Zhao, X., Li, X., Chang, X.P. and Li, Y.H. (2018), "Stability analysis of oil-conveying pipes on two-parameter foundations with generalized boundary condition by means of Green's functions", Eng. Struct., 173, 300-312. https://doi.org/10.1016/j.engstruct.2018.07.001.
  48. Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
  49. Mahapatra, T.R., Kar, V.R., Panda, S.K. and Mehar, K. (2017), "Nonlinear thermoelastic deflection of temperature-dependent FGM curved shallow shell under nonlinear thermal loading", J. Therm. Stresses, 40(9), 1184-1199. https://doi.org/10.1080/01495739.2017.1302788.
  50. Mollamahmutoglu, C. and Mercan, A. (2019), "A novel functional and mixed finite element analysis of functionally graded micro-beams based on modified couple stress theory", Compos. Struct., 223, 110950. https://doi.org/10.1016/j.compstruct.2019.110950.
  51. Nebab, M., Ait Atmane, H., Bennai, R. and Tounsi, A. (2019a), "Effect of variable elastic foundations on static behavior of functionally graded plates using sinusoidal shear deformation", Arabian J. Geosci., 12(24).809. doi:10.1007/s12517-019-4871-5.
  52. Nebab, M., Atmane, H. A., Bennai, R., Tounsi, A. and Bedia, E.A.A. (2019c), "Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT", Struct. Eng. Mech., 69(5), 511-525. https://doi.org/10.12989/sem.2019.69.5.511.
  53. Nebab, M., Atmane, H.A., Bennai, R. and Tahar, B. (2019b), "Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory", Earthq. Struct., 17(5), 447-462. https://doi.org/10.12989/eas.2019.17.5.447.
  54. Nebab, M., Benguediab, S., Ait Atmane, H. and Bernard, F. (2020), "A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations", Geomech. Eng., 22(5), 415-431. https://doi.org/10.12989/gae.2020.22.5.415.
  55. Park, J.S. and Kim, J.H. (2006), "Thermal postbuckling and vibration analyses of functionally graded plates", J. Sound Vib., 289(1-2), 77-93. https://doi.org/10.1016/j.jsv.2005.01.031.
  56. Pourmoayed, A., Fard, K.M. and Rousta, B. (2021), "Free vibration analysis of sandwich structures reinforced by functionally graded carbon nanotubes", Compos. Mater. Eng., 3(1), 1-23. https://doi.org/10.12989/cme.2021.3.1.001.
  57. Pradhan, K.K., and Chakraverty, S. (2016), "Free vibration of FG Levy plate resting on elastic foundations", Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics, 169(1), 3-28. https://doi.org/10.1680/jencm.15.00014.
  58. Pradhan, S.C. and Murmu, T. (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vib., 321(1-2), 342-362. https://doi.org/10.1016/j.jsv.2008.09.018.
  59. Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47, 663-684. https://doi.org/10.1002/(SICI)10970207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.
  60. Reddy, J.N. and Cheng, Z.Q. (2001), "Three-dimensional thermomechanical deformations of functionally graded rectangular plates", Eur. J. Mech. A/Solid., 20, 841-855. https://doi.org/10.1016/S0997-7538(01)01174-3.
  61. Safarpour, M., Ghabussi, A., Ebrahimi, F., Habibi, M. and Safarpour, H. (2020), "Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM", Thin-Wall. Struct., 150, 106683, https://doi.org/10.1016/j.tws.2020.106683.
  62. Sayyad, S.A. and Ghugal, Y.M. (2020), "Stress analysis of laminated composite and sandwich cylindrical shells using a generalized shell theory", Compos. Mater. Eng., 2(2), 103-124. https://doi.org/10.12989/cme.2020.2.2.103.
  63. Shahsavari, D., Shahsavarib, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.
  64. She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct., 37(1), 27-35. https://doi.org/10.12989/scs.2020.37.1.027 27.
  65. She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin-Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
  66. Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nuclear Eng. Design., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013.
  67. Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.
  68. Thanh, C.L., Nguyen, T.N., Vu, T. H., Khatir, S. and Abdel Wahab, M. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Engineering with Computers. doi:10.1007/s00366-020-01154-0.
  69. Woo, J., Meguid, S.A. and Ong, L.S. (2006), "Nonlinear free vibration behavior of functionally graded plates", J. Sound Vib., 289, 595-611. https://doi.org/10.1016/j.jsv.2005.02.031.
  70. Zhang, L.W., Song, Z.G. and Liew, K.M. (2015), "Nonlinear bending analysis of FG-CNT reinforced composite thick plates resting on Pasternak foundations using the element-free IMLSRitz method", Compos. Struct., 128, 165-175. https://doi.org/10.1016/j.compstruct.2015.03.011.
  71. Zhao, X., Hu, Q.J., Crossley. W., Du, C.C. and Li, Y.H. (2017), "Analytical solutions for the coupled thermoelastic vibrations of the cracked Euler-Bernoulli beams by means of Green's functions", Int. J. Mech. Sci., 128, 37-53. https://doi.org/10.1016/j.ijmecsci.2017.04.009.
  72. Zhao, X., Chen, B., Li, Y.H., Zhu, W.D., Nkiegaing, F.J. and Shao, Y.B. (2020), "Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green's functions", J. Sound Vib., 155, 477-491. https://doi.org/10.1016/j.jsv.2019.115001.
  73. Zouatnia, N. and Hadji, L. (2019), "Static and free vibration behavior of functionally graded sandwich plates using a simple higher order shear deformation theory", Adv. Mater. Res., 8(4), 313-335. https://doi.org/10.12989/amr.2019.8.4.313.