DOI QR코드

DOI QR Code

Multi-responsive hydrogel cross-linked synthesized spiropyran-based hydrophilic cross-linker

스피로피란 기반 친수성 가교제를 활용한 다중 자극 감응형 하이드로젤

  • Jeong, Hye-Won (Department of Chemical Engineering, Soongsil University) ;
  • Kim, Sang Jin (Department of Chemical Engineering, Soongsil University) ;
  • Heo, Eun-Jin (Department of Chemical Engineering, Soongsil University) ;
  • Shin, Sung Gyu (Department of Chemical Engineering, Soongsil University) ;
  • Han, Sa Ra (Department of Chemical Engineering, Soongsil University) ;
  • Jeong, Jae Hyun (Department of Chemical Engineering, Soongsil University)
  • Received : 2021.01.25
  • Accepted : 2021.02.24
  • Published : 2021.02.28

Abstract

Stimuli-responsive hydrogels are being extensively studied to alter their physiochemical properties in response to external changes such as temperature, pH, light and mechanical stress. This study reports multi-responsive hydrogel having optical change response to external stress. First, we synthesized a novel spiropyran cross-linker successfully by grafting poly(ethylene glycol) diacrylate (PEGDA) on both side of spiropyran and introduced to hydrogel. In the results, the yellow spriopyran structure was conversed to purple merocyaine structure by internal stress during swelling of the hydrogels cross-linked with the SP-PEGDAs. Also, the hydrogel could be visualized the swelling and deswelling process in response to pH, by converting MC and prontonated MC structure.

온도, pH, 빛 및 힘 등의 외부 자극에 반응하여 그 구조나 물리 화학적 특성이 변화 가능한 자극 감응형 하이드로젤에 대한 연구가 활발하게 진행되고 있다. 본 연구에서는 응력 감응형 분자인 스피로피란을 사용하여 응력 및 pH 감응형 하이드로젤을 제조하였다. 먼저, 폴리에틸렌 다이아크릴레이트(PEGDA)를 스피로피란 분자 양 끝에 접목시켜, 수용액에 쉽게 용해될 뿐만 아니라 하이드로젤 가교제 역할이 가능한 아령모양(PEG-spiropyran-PEG)의 SP-PEGDA 분자를 합성하였다. 이렇게 합성한 SP-PEGDA로 가교된 하이드로젤은 팽윤에 의해 발생하는 내부 응력에 의해 노란색의 스피로피란(SP) 분자를 보라색의 메로사인(MC) 형태로 변환시켰다. 또한 pH에 따라 양성화된 메로사인(MCH) 형태로 변환하여 팽윤과 수축을 시각화 하였다.

Keywords

References

  1. M. Tanaka, M. Nakahata, P. Linke, S. Kaufmann, "Stimuli-responsive hydrogels as a model of the dynamic cellular microenvironment", Polymer Journal, pp. 1-10 (2020)
  2. N. Sood, A. Bhardwaj, S. Mehta, A. Mehta, "Stimuli-responsive hydrogels in drug delivery and tissue engineering", Drug Delivery, Vol. 23, No. 3 pp. 748-770 (2016) https://doi.org/10.3109/10717544.2014.940091
  3. S. G. Shin, S. R. Han, N. Jung, Y. Ji, J. H. Jeong, "Physiological activities of poly(amino acid)'s derivatives with β-sheet structure on the skin", Journal of the Korean Applied Science and Technology, Vol. 37, No. 6 pp. 1597-1604 (2020) https://doi.org/10.12925/JKOCS.2020.37.6.1597
  4. P. Theato, B. S. Sumerlin, R. K. O'Reilly, T. H. Epps, III, "Stimuli responsive materials", Chemical Society Reviews, Vol. 42, No. 17 pp.7055-7056 (2016) https://doi.org/10.1039/c3cs90057f
  5. J. N. Brantley, K. M. Wiggins, C. W. Bielawski, "Polymer mechanochemistry: the design and study of mechanophores", Polymer international, Vol. 61, No. 1 pp. 2-12 (2013) https://doi.org/10.1002/pi.3175
  6. C. Weder, "Polymers react to stress", Nature, Vol. 459, No. 7243 pp. 45-46 (2009) https://doi.org/10.1038/459045a
  7. D. A. Davis, A. Hamilton, J. Yang, L. D. Cremar, "Force-induced activation of covalent bonds in mechanoresponsive polymeric materials", Nature, Vol. 459, No. 7243 pp. 68-72 (2009) https://doi.org/10.1038/nature07970
  8. B. A. Beiermann, S. L. B. Kramer, J. S. Moore, "Role of mechanophore orientation in mechanochemical reactions", ACS Macro Letters, Vol. 1, No. 1 pp. 163-166 (2012) https://doi.org/10.1021/mz2000847
  9. C. K. Lee, C. E. Diesendruck, E. Lu, A. N. Pickett, P. A. May, J. S. Moore, P. V. Braun, "Solvent swelling activation of a mechanophore in a polymer network", Macromolecules, Vol. 47, No. 8 pp. 2690-2694 (2014) https://doi.org/10.1021/ma500195h
  10. T. A. Kim, M. J. Robb, J. S. Moore, S. R. White, "Mechanical reactivity of two different spiropyran mechanophores in polydimethylsiloxane", Macromolecules, Vol. 51, No. 22 pp. 9177-9183 (2018) https://doi.org/10.1021/acs.macromol.8b01919
  11. T. A. Kim, B. A. Beiermann, S. R. White, N. R. Sottos, "Effect of mechanical stress on spiropyran-merocyanine reaction kinetics in a thermoplastic polymer", ACS Macro letters, Vol. 5, No. 12 pp. 1312-1316 (2016) https://doi.org/10.1021/acsmacrolett.6b00822
  12. B. A. Beiermann, D. A. Davis, S. L. B. Kramer, J. S. Moore, N. R. Sottos, S. R. White, "Environmental effects on mechanochemical activation of spiropyran in linear PMMA", Journal of Materials Chemistry, Vol. 21, No. 23, 8443-8447 (2011) https://doi.org/10.1039/c0jm03967e
  13. J. W. Lim, H. Kim, Y. Kim, S. G. Shin, S. Cho, W. G. Jung, J. H. Jeong, " An Active and Soft Hydrogel Actuator to Stimulate Live Cell Clusters by Self-folding", Polymers, Vol. 12, No. 3 pp. 583 (2020) https://doi.org/10.3390/polym12030583
  14. M. Gan, T. Xiao, Z. Liu, Y. Wang, "Layered photochromic films stacked from spiropyran-modified montmorillonite nanosheets", RSC advances, Vol. 9, No. 22 pp. 12325-12330 (2019) https://doi.org/10.1039/c9ra01480b
  15. S. Chen, F. Jiang, Z. Cao, G. Wang, Z. M. Dang, "Photo, pH, and thermo triple-responsive spiropyran-based copolymer nanopartilces for controlled release", Chemical Communications, Vol. 51, No. 63 pp. 1633-126236 (2015) https://doi.org/10.1039/c5cc04087f
  16. D. P. Huynh, M. K. Nguyen, B. S. Pi, M. S. Kim, S. Y. Chae, K. C. Lee, B. S. Kim, S. W. Kim, D. S. Lee, "Functionalized injectable hydrogels for controlled insulin delivery", Biomaterials, Vol. 29, No. 16 pp. 2527-2534 (2008) https://doi.org/10.1016/j.biomaterials.2008.02.016
  17. J. Zhu, R. E. Marchant, "Design properties of hydrogel tissue-engineering scaffolds", Expert review of medical devices, Vol. 8, No. 5 pp. 607-626 (2011) https://doi.org/10.1586/erd.11.27
  18. C. Sun, J. Miao, J. Yan, K. Yang, C. Mao, J. Ju, J. Shen, "Applications of antibiofouling PEG-coating in electrochemical biosensors for determination of glucose in whole blood:, Electrochimica Acta, Vol. 89, pp. 549-554 (2013) https://doi.org/10.1016/j.electacta.2012.11.005
  19. J. H. Jeong, J. J. Schmidt, C. Cha, H. Kong, "Tuning responsiveness and structural integrity of a pH responsive hydrogel using a poly(ethylene glycol) cross-linker", Soft Matter, Vol. 6, No. 16 pp. 3930-3938 (2010) https://doi.org/10.1039/c0sm00094a
  20. Q. Wenlian, P. A. Gurr, G. G. Qiao, "Color-Switchable Polar Polymeric Materials", ACS applied materials & interfaces, Vol. 11, No. 32 pp. 29268-29275 (2019) https://doi.org/10.1021/acsami.9b09023
  21. H. Chen, F. Yang, Q. Chen, J. Zheng, "A Novel Design of Multi-Mechanoresponsive and Mechanically Strong Hydrogels", Advanced Materials, Vol. 29, No. 21 pp. 1606900 (2017) https://doi.org/10.1002/adma.201606900
  22. A. Garcia, M. Marquez, T. Cai, R. Rosario, Z. Hu, D. Gust, M. Hayes, S. A. Vail, C. D. Park, "Photo-, Thermally-, and pH-Responsive Microgels", Langmuir, Vol. 23, No. 1 pp. 224-229 (2007) https://doi.org/10.1021/la061632n
  23. Z. Sun, S. Liu, K. Li, L. Tan, L. Cen, G. Fu, "Well-defined and biocompatible hydrogels with toughening and reversible photoresponsisve properties", Soft matter, Vol. 12, No. 7 pp. 2192-2199 (2016) https://doi.org/10.1039/c5sm02129d
  24. T.P. Vales, I. W. T. Badon, H. J. Kim, "Multi-responsive hydrogels functionalized with a photochromic spiropyran-conjugated chitosan network", Macromolecular Research, Vol. 26, No. 10 pp. 950-953 (2018) https://doi.org/10.1007/s13233-018-6126-9
  25. B. Wang, X. Xiao, Y. Zhang, L. Liao, "High strength dual-crosslinked hydrogels with photo-switchable color changing behavior", European Polymer Journal, Vol. 116, pp. 545-553 (2019) https://doi.org/10.1016/j.eurpolymj.2019.04.035
  26. A. Abdollahih, A. Mouraki, M. H. Sharifian, A. R. Mahdavian, "Photochromic properties of stimuli-responsive cellulosic papers modified by spiropyran-acrylic copolymer in reusable pH-seonsors", Carbohydrate Polymers, Vol. 200, pp. 583-594 (2018) https://doi.org/10.1016/j.carbpol.2018.08.042
  27. G. Such, R. A. Evans, L. H. Yee, T. P. Davis, "Factors influencing photochromism of spiro-compounds within polymeric materices", Journal of Macromolecular Science, Part C: Polymer Reviews, Vol. 43, No. 4 pp. 547-579 (2003) https://doi.org/10.1081/mc-120025978
  28. M. Gomez-Gonzale, E. Latorre, M. Arroyo, X. Trepat, "Measuring mechanical stress in living tissues", Nature Reviews Physics, Vol. 1, No. 2, pp. 300-317 (2020)
  29. K. A. White, B. K. Grillo-Hill, D. L. Barber, "Cancer cell behaviors mediated by dyseregulated pH dynamics at a glance", Journal of Cell Science, Vol. 130, No. 4 pp. 663-669 (2017) https://doi.org/10.1242/jcs.195297