DOI QR코드

DOI QR Code

Analysis of Number of Elastically Cross-links to Predict the Mechanical Properties of 3D Networked Poly(sodium acrylate) Gel

폴리아크릴산나트륨 3차원 네트워크 겔의 물성 예측을 위한 가교개수밀도 분석

  • Kim, Sang Jin (Department of Chemical Engineering, Soongsil University) ;
  • Jeong, Hye-Won (Department of Chemical Engineering, Soongsil University) ;
  • Shin, Sung Gyu (Department of Chemical Engineering, Soongsil University) ;
  • Cho, Sung Woo (Department of Chemical Engineering, Soongsil University) ;
  • Jeong, Jae Hyun (Department of Chemical Engineering, Soongsil University)
  • Received : 2021.02.19
  • Accepted : 2021.02.25
  • Published : 2021.02.28

Abstract

In this study, 3D networked poly(sodium acrylate) gel was polymerized and controlled with the crosslinking environment to evaluate the mechanical properties and swelling behavior. In general, as the degree of crosslinking in a pre-gelled solution increases, the swelling ratio of the 3D networked gel decrease while the mechanical strength of the gel increases. Interestingly, this study demonstrates that the polymerization and crosslinking efficiency in gelling process could be depended on the crosslinking environment by evaluating the number of elastically cross-links in 3D networked gel. As a result, the number of elastically corss-links would be changed with 3.6 times as varying of the crosslinking environment while keeping the degree of crosslinking. It is expected that the 3D networked gel would be optimized as an effective absorbing agent for VOCs by using the gel evaluation method based on the number of elastically cross-links.

본 연구에서는 3차원 네트워크 폴리아크릴산나트륨 겔의 가교환경을 변화시켜 기계적 강도 및 팽윤거동을 제어하고 그 물성을 평가하는 연구를 진행하였다. 일반적으로 겔 용액의 가교도가 증가함에 따라 3차원 네트워크 겔의 팽윤비는 감소하고 겔의 기계적 강도는 증가한다. 본 연구에서는 3차원 네트워크 겔 상의 가교개수밀도를 산출하여, 겔화 과정에서 가교환경에 의존하는 중합효율 및 가교효율을 확인하였다. 그 결과, 겔 용액에서 단량체와 가교제의 중량비가 동일하더라도 가교환경이 달라지면 실제 제조된 겔 내부의 가교개수밀도가 3.6배 이상 달라질 수 있음을 확인하였다. 본 연구에서 시도한 가교개수밀도 기반 겔 평가 방법을 활용하면 효과적인 VOCs 흡수제로써 3차원 네트워크 겔을 최적화 할 수 있으리라 기대된다.

Keywords

References

  1. J. H. Jeong, V. Chan, C. Cha, P. Zorlutuna, C. Dyck, K. J. Hsia, R. Bashir, H. Kong, "Living: Microvascular Stamp for Patterning of Functional Neovessels; Orchestrated Control of Matrix Property and Geometry", Advanced Materials, Vol. 22, pp. 3239-3246 (2011).
  2. N. A. Peppas, J. Z. Hilt, A. Khademhosseini, R. Langer, "Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology", Advanced Materals, Vol. 18, No. 11 pp. 1345-1360 (2006). https://doi.org/10.1002/adma.200501612
  3. H. Kwon, "Evaluation of skin improvement effect and feeling of use by a hydrogel face mask pack", Journal of the Korean Applied Science and Technology, Vol. 37, No. 6 pp. 1773-1778 (2020). https://doi.org/10.12925/JKOCS.2020.37.6.1773
  4. T. Ono, T. Sugimoto, S. Shinkai, K. Sada, "Lipophilic polyelectrolyte gels as super-absorbent polymers for nonpolar organic solvents", Nature materials, Vol. 6, No. 6 pp. 429-433 (2007). https://doi.org/10.1038/nmat1904
  5. G. Darracq, A. Couvert, C. Couriol, A. Amrane, P. L. Cloirec, "Removal of Hydrophobic Volatile Organic Compounds in an Integrated Process Coupling Absorption and Biodegradation-Selection of an Organic Liquid Phase", Water, Air, & Soil Pollution, Vol. 223, No. 8 pp. 4969-4997 (2012). https://doi.org/10.1007/s11270-012-1251-0
  6. J. Yoon, K. Cho, "A review on the treatment of volatile organic compounds using absorbents", Journal of Odor and Indoor Environment, Vol. 17, No. 2 pp. 95-121 (2018). https://doi.org/10.15250/joie.2018.17.2.95
  7. R. Munoz, A. J. Daugulis, M. Hernandez, G. Quijano, "Recent advances in two-phase partitioning bioreactors for the treatment of volatile organic compounds", Biotechnology Advances, Vol. 30, No. 6 pp. 1707-1720 (2012). https://doi.org/10.1016/j.biotechadv.2012.08.009
  8. M. Montes, A. J. Daugulis, M. C. Veiga, C. Kennes, "Characterization of absorbent polymers for the removal of volatile hydrophobic pollutants from air", Journal of Chemical Technology and Biotechnology, Vol. 86, No. 1 pp. 47-53 (2011). https://doi.org/10.1002/jctb.2517
  9. S. G. Shin, N. S. Jung, H. J. Kim, J. H. Jeong, "Analysis of Properties of Lipophilic Gel Integrated with Grafted Crosslinker for Absorbing VOCs", Journal of Korean Society for Atmospheric Environment, Vol. 35, No. 1 pp. 27-35 (2019). https://doi.org/10.5572/KOSAE.2019.35.1.027
  10. C. Cha, R. H. Kohman, H. Kong, "Biodegradable polymer crosslinker: independent control of stiffness, toughness, and hydrogel degradation rate", Advanced Functional Materials, Vol. 19, No. 19 pp. 3056-3062 (2009). https://doi.org/10.1002/adfm.200900865
  11. Y. Oyama, Y. Hiejima, K. Nitta, "Swelling behavior of butyl and chloroprene rubber composites with poly(sodium acrylate) showing high water uptake", Journal of Applied Polymer Science, Vol. 137, No. 14 pp. 48535 (2020). https://doi.org/10.1002/app.48535
  12. G. B. Marandi, S. Hariri, G. R. Mahdavinia, "Effect of hydrophobic monomer on the synthesis and swelling behaviour of a collagen‐graft‐poly[(acrylic acid)‐co‐(sodium acrylate)] hydrogel", Polymer International, Vol. 58, No. 2 pp. 227-235 (2009). https://doi.org/10.1002/pi.2520
  13. X. F. Song, Y. Y. Chu, "Preparation and characterization of poly(sodium acrylate/cement clinker) DN hydrogel composites", Polymer Composites, Vol. 40, No. 6 pp. 2462-2472 (2019). https://doi.org/10.1002/pc.25117
  14. J. Byun, S. G. Shin, S. R. Han, S. W. Cho, J. W. Lim, J. H. Jeong, "Analysis of Procollagen Biosynthesis of Functional Peptides Utilizing Stiffness Controlled Artificial Skin Dermis", Journal of the Society of Cosmetic Scientists of Korea, Vol. 44, No. 4 pp. 419-425 (2018). https://doi.org/10.15230/SCSK.2018.44.4.419
  15. J. W. Lim, N. Jung, S. G. Shin, H. J. Kwon, J. H. Jeong, "Self-folding of Multi-layered and Compartmented Hydrogel Designed for 4D Mask Pack", Journal of the Society of Cosmetic Scientists of Korea, Vol. 44, No. 4 pp. 399-405 (2018). https://doi.org/10.15230/SCSK.2018.44.4.399
  16. K. S. Anseth, C. N. Bowman, L. Brannon-Peppas, "Mechanical properties of hydrogels and their experimental determination", Biomaterials, Vol. 17, No. 17 pp. 1647-1657 (1996). https://doi.org/10.1016/0142-9612(96)87644-7
  17. J. J. Schmidt, J. H. Jeong, V. Chan, C. Cha, K. Baek, M. Lai, R. Bashir, H. Kong, "Tailoring the Dependency between Rigidity and Water Uptake of a Microfabricated Hydrogel with the Conformational Rigidity of a Polymer Cross-Linker", Biomacromolecules, Vol. 14, No. 5 pp. 1361-1369 (2013). https://doi.org/10.1021/bm302004v
  18. S. R. Han, S. G. Shin, S. J. Oh, S. W. Cho, N. Jung, B. K. Kang, J. H. Jeong, "Tuning the rheological properties of colloidal microgel controlled with degree of cross-links", Journal of the Korean Applied Science and Technology, Vol. 36, No. 2 pp. 655-665 (2019). https://doi.org/10.12925/JKOCS.2019.36.2.655
  19. M. H. Jung, S. G. Shin, J. W. Lim, S. R. Han, H. J. Kim, J. H. Jeong, "Tuning the Stiffness of Dermal Fibroblast-Encapsulating Collagen Gel by Sequential Cross-linking", Journal of the Society of Cosmetic Scientists of Korea, Vol. 44, No. 1 pp. 23-29 (2018). https://doi.org/10.15230/SCSK.2018.44.1.23
  20. H. J. Kim, Y. N. Cho, S. W. Cho, Y. K. Kim, H. W. Ryu, J. H. Jeong, "Tuning the hydrophobicity of agar hydrogel with substituent effect", Polymer(Korea), Vol. 40, No. 2 pp. 321- 327 (2016). https://doi.org/10.7317/pk.2016.40.2.321
  21. V. Chan, P. Zorlutuna, J. H. Jeong, H. Kong, R. Bashir, "Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation", Lab on a Chip, Vol. 10, No. 16 pp. 2062-2070 (2010). https://doi.org/10.1039/c004285d
  22. S. W. Cho, S. G. Shin, H. J. Kim, S. R. Han, J. H. Jeong, "Selffolding of Multi-layered Hydrogel Designed for Biological Machine", Polymer(Korea), Vol. 40, No. 2 pp. 1-6 (2017).
  23. H. J. Kong, E. Alsberg, D. Kaigler, K. Y. Lee, D. J. Mooney, "Controlling Degradation of Hydrogels via the Size of Crosslinked Junctions", Advanced Materials, Vol. 16, No. 21 pp. 1917-1921 (2004). https://doi.org/10.1002/adma.200400014