DOI QR코드

DOI QR Code

구조물 노후도를 반영한 외부긴장 보강 효과에 관한 실험적 연구

Experimental Study on the Strengthening Effect of External Prestressing Method Considering Deterioration

  • 김상현 (한국건설기술연구원 복합신소재연구센터) ;
  • 정우태 (한국건설기술연구원 복합신소재연구센터) ;
  • 강재윤 (한국건설기술연구원 차세대인프라연구센터) ;
  • 박희범 (한국건설기술연구원 복합신소재연구센터) ;
  • 박종섭 (한국건설기술연구원 복합신소재연구센터)
  • 투고 : 2020.10.19
  • 심사 : 2020.12.26
  • 발행 : 2021.02.28

초록

콘크리트 구조물은 재료의 열화나 초과된 하중 및 환경적 요인에 의해 점차 노후화 되며 그 성능이 감소하여 구조물의 사용성 및 안전성에 영향을 미치게 된다. 노후 교량의 보강 공법 중 외부긴장 공법이 널리 사용 중이지만, 노후도에 따른 보강 효과 및 영향 규명은 미흡한 실정이다. 따라서 이 연구에서는 구조물의 노후도를 콘크리트 압축강도 및 인장철근량의 감소로 가정하고 노후도에 따른 외부긴장 공법의 보강 효과를 확인하기 위해 무보강 및 외부긴장 공법을 적용한 실험체의 4점 재하실험을 수행하여 보강 여부에 따른 거동을 분석하고 보강 효과를 확인하였다. 실험 결과 정착구의 조기 탈락에 따른 극한 상태의 보강량을 확인하기 어려웠으며, 이에 따라 외부긴장 보강 공법의 적용 시 앵커 볼트에 관한 규정 준수가 필요하다. 외부긴장 보강 여부에 따라 균열하중 및 항복하중이 증가하였으나, 균열 이전에는 보강 전, 후의 강성이 유사하여 보강 효과를 확인하긴 어려웠다.

Concrete structures gradually age due to deterioration of materials or excess loads and environmental factors, and their performance decreases, affecting the usability and safety of structures. Although external tension construction methods are widely used among the reinforcement methods of old bridges, it is insufficient to identify the effects and effects of reinforcement depending on the level of aging. Therefore, in this study, a four-point loading experiment was conducted on the subject with the non-reinforced and external tensioning method to confirm the reinforcement effect of the external tensioning method, assuming the aging of the structure as a reduction in the compressive strength and tensile reinforcement of concrete, to analyze the behavior of the reinforcement and confirm the reinforcement effect. As a result of the experiment, it was difficult to identify the amount of reinforcement in the extreme condition due to early elimination of the anchorage. Therefore, compliance with the regulations on anchor bolts is required when applying the external tension reinforcement method. Crack load and yield load increased depending on whether external tension was reinforced, but before the crack, the stiffness before and after reinforcement was similar, making it difficult to confirm the reinforcement effect.

키워드

참고문헌

  1. Jung, W. T., Park, J. S., Kang, J. Y., and Keum, M. S. (2017), Flexural Behavior of Concrete Beam Stenghened by Near-Surface Mounted CFRP Reinforcement Using Equivalent Section Model, Advanced in Materials Science and Engineering, Hindawi, 2017(9180624).
  2. Kim, S. H., Park, S. Y., and Jeon, S. J. (2020), Long-Term Characteristics of Prestressing Force in Post-Tensioned Structures Measured Using Smart Strands, Applied Sciences, MDPI, 10(12).
  3. Park, S. Y., Yang, C. Y., and Kim, C. H. (2007), Ultimate Flexural Strength of Reinforced Concrete Beams Strengthed Using CFRP Tendon, Journal of The Korean Society of Civil Engineers, Korea Society of Civil Engineers, 27(5A), 671-679.
  4. Park, S. Y., Kim, C. H., and Hong, S. Y. (2007), Ultimate Stress of Prestressing CFRP Tendons in PSC Beams Strengthened By External CFRP Prestressing, Journal of the Korea Concrete Institute, Korea Concrete Institute, 19(6), 735-744. https://doi.org/10.4334/JKCI.2007.19.6.735
  5. Jung, W. T., Park, Y. H., Park, J. S., and Kim, C. Y. (2011), Strengthening Effect of Reinforced Concrete Beams Strengthened with NSM CFRP Reinforcements and Various Reinforcement Details, Journal of the Korea Concrete Institute, Korea Concrete Institute, 23(6), 781-790. https://doi.org/10.4334/JKCI.2011.23.6.781
  6. Shim, N. H. and Park, Y. S. (2004), Experimental Study on the Strengthening Method of RC Beam Applied External Prestressing Using Strand or CFRP, Journal of the Korea Institute for Structural Maintenance and Inspection, Korea Institute for Structural maintenance and Inspection, 8(3), 207-215.
  7. Lee, B. J., Park, J. G., Kim, M. Y., Shin, H. M., and Park, C. H. (2007), Experimental Study on Flexural Behavior of PSC I Girder and the Effect of External Prestressing, Journal of the Korea Concrete Institute, Korea Concrete Institute, 19(6), 755-762. https://doi.org/10.4334/JKCI.2007.19.6.755
  8. Oh, B. H., Kim, K. S., Lew, Y., and Yoo, D. W. (2001), Ultimate Behavior and Load Distribution Characteristics of Prestressed Concrete Girder Bridges, Journal of The Korean Society of Civil Engineers, Korea Society of Civil Engineers, 21(5A), 761-771.
  9. Han, M. Y., and Park, S. K. (1999), A Strengthening method of PSC Girder Using External Prestressing and Glass Fiber Reinforcement, Journal of the Korea Concrete Institute, Korea Concrete Institute, 19(1-3), 387-395.
  10. Naaman, A. E., and Aldhairi, F. M. (1991a), Stress at Ultimate in Unbonded Post-Tensioning tendon: Part 1-Evaluation of the State of the Art, ACI Structural Journal, American Concrete Institute, 88(5), 641-651.
  11. Naaman, A. E. and Aldhairi, F. M. (1991b), Stress at Ultimate in Unbonded Post-Tensioning tendon: Part 2-Proposed Methodology, ACI Structural Journal, American Concrete Institute, 88(5), 683-690
  12. Naaman, A. E., Burns, N., French, C., Gamble, W. L., and Mattock, A. H. (2002), Stresses in Unbonded Prestressing Tendons at Ultimate: Recommendation, ACI Structural Journal, American Concrete Institute, 99(4), 518-529.
  13. Ozkul, O., Nassif, H., Tanchan, P., and Harajli, M. H. (2008), Rational Approach for Predicting Stress in Beams with Unbonded Tendons, ACI Structural Journal, American Concrete Institute, 105(3), 338-347.
  14. Back, S. C., Song, J. H., Kim, H. B., and Kim, S. S. (2016), Reinforcement Effects Using V Type External Strands on PSC I Girder Bridges, Journal of the Korea Institute for Structural Maintenance and Inspection, Korea Institute for Structural maintenance and Inspection, 20(3), 049-057.
  15. Korea Concrete Institute. (2012), Structural Concrete Design Code, Korea Concrete Institute, Seoul, 259-283.