DOI QR코드

DOI QR Code

The First Report to Evaluate Safety of Cyanobacterium Leptolyngbya sp. KIOST-1 for Use as a Food Ingredient: Oral Acute Toxicity and Genotoxicity Study

  • Lee, Youngdeuk (Jeju Marine Research center, Korea Institute of Ocean Science and Technology) ;
  • Kim, Taeho (Jeju Marine Research center, Korea Institute of Ocean Science and Technology) ;
  • Lee, Won-Kyu (Jeju Marine Research center, Korea Institute of Ocean Science and Technology) ;
  • Ryu, Yong-Kyun (Jeju Marine Research center, Korea Institute of Ocean Science and Technology) ;
  • Kim, Ji Hyung (Jeju Marine Research center, Korea Institute of Ocean Science and Technology) ;
  • Jeong, Younsik (Jeju Marine Research center, Korea Institute of Ocean Science and Technology) ;
  • Park, Areumi (Jeju Marine Research center, Korea Institute of Ocean Science and Technology) ;
  • Lee, Yeon-Ji (Jeju Marine Research center, Korea Institute of Ocean Science and Technology) ;
  • Oh, Chulhong (Jeju Marine Research center, Korea Institute of Ocean Science and Technology) ;
  • Kang, Do-Hyung (Jeju Marine Research center, Korea Institute of Ocean Science and Technology)
  • Received : 2020.07.10
  • Accepted : 2020.11.16
  • Published : 2021.02.28

Abstract

Leptolyngbya sp. KIOST-1 (LK1) is a newly isolated cyanobacterium that shows no obvious cytotoxicity and contains high protein content for both human and animal diets. However, only limited information is available on its toxic effects. The purpose of this study was to validate the safety of LK1 powder. Following Organisation for Economic Co-operation and Development (OECD) guidelines, a single-dose oral toxicity test in Sprague Dawley rats was performed. Genotoxicity was assessed using a bacterial reverse mutation test with Salmonella typhimurium (strains TA98, TA100, TA1535, and TA1537) and Escherichia coli WP2 uvrA, an in vitro mammalian chromosome aberration test using Chinese hamster lung cells, and an in vivo mammalian erythrocyte micronucleus test using Hsd:ICR (CD-1) SPF mouse bone marrow. After LK1 administration (2,500 mg/kg), there were no LK1-related body weight changes or necropsy findings. The reverse mutation test showed no increased reverse mutation upon exposure to 5,000 ㎍/plate of the LK1 powder, the maximum tested amount. The chromosome aberration test and micronucleus assay demonstrated no chromosomal abnormalities and genotoxicity, respectively, in the presence of the LK1 powder. The absence of physiological findings and genetic abnormalities suggests that LK1 powder is appropriate as a candidate biomass to be used as a safe food ingredient.

Keywords

References

  1. Abdulqader G, Barsanti L, Tredici MR. 2000. Harvest of Arthrospira platensis from Lake Kossorom (Chad) and its household usage among the Kanembu. J. Appl. Phycol. 12: 493-498. https://doi.org/10.1023/A:1008177925799
  2. Farrar W. 1966. Tecuitlatl; a glimpse of Aztec food technology. Nature 211: 341-342. https://doi.org/10.1038/211341a0
  3. Gantar M, Svircev Z. 2008. Microalgae and cyanobacteria: food for thought(1). J. Phycol. 44: 260-268. https://doi.org/10.1111/j.1529-8817.2008.00469.x
  4. Ciferri O. 1983. Spirulina, the edible microorganism. Microbiol. Rev. 47: 551-578. https://doi.org/10.1128/MR.47.4.551-578.1983
  5. Takenaka H, Yamaguchi Y, Sakaki S, Watarai K, Tanaka N, Hori M, et al. 1998. Safety evaluation of Nostoc flagelliforme (nostocales, Cyanophyceae) as a potential food. Food Chem. Toxicol. 36: 1073-1077. https://doi.org/10.1016/S0278-6915(98)00089-1
  6. Kumar MH, Ramesh C. 2014. Single dose oral toxicity study of nano formulated extract of Picrorhiza kurroa in wistar rats. J. Pharmacogn. Phytochem. 2: 138-145.
  7. Vardaka E, Kormas KA, Katsiapi M, Genitsaris S, Moustaka-Gouni M. 2016. Molecular diversity of bacteria in commercially available "Spirulina" food supplements. PeerJ. 4: e1610. https://doi.org/10.7717/peerj.1610
  8. Blinkova LP, Gorobets OB, Baturo AP. 2001. [Biological activity of Spirulina]. Zh. Mikrobiol. Epidemiol. Immunobiol. (2): 114-118.
  9. Pardhasaradhi BV, Ali AM, Kumari AL, Reddanna P, Khar A. 2003. Phycocyanin-mediated apoptosis in AK-5 tumor cells involves down-regulation of Bcl-2 and generation of ROS. Mol. Cancer Ther. 2: 1165-1170.
  10. Subhashini J, Mahipal SV, Reddy MC, Mallikarjuna Reddy M, Rachamallu A, Reddanna P. 2004. Molecular mechanisms in C-Phycocyanin induced apoptosis in human chronic myeloid leukemia cell line-K562. Biochem. Pharmacol. 68: 453-462. https://doi.org/10.1016/j.bcp.2004.02.025
  11. Romay C, Armesto J, Remirez D, Gonzalez R, Ledon N, Garcia I. 1998. Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflamm. Res. 47: 36-41.
  12. Romay C, Gonzalez R, Ledon N, Remirez D, Rimbau V. 2003. C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr. Protein Pept. Sci. 4: 207-216. https://doi.org/10.2174/1389203033487216
  13. Kim JH, Kang DH. 2016. Draft genome sequence of Leptolyngbya sp. KIOST-1, a filamentous cyanobacterium with biotechnological potential for alimentary purposes. Genome Announc. 4: e00984-16.
  14. Kim JH, Choi W, Jeon SM, Kim T, Park A, Kim J, et al. 2015. Isolation and characterization of Leptolyngbya sp. KIOST-1, a basophilic and euryhaline filamentous cyanobacterium from an open paddle-wheel raceway Arthrospira culture pond in Korea. J. Appl. Microbiol. 119: 1597-1612. https://doi.org/10.1111/jam.12961
  15. Morton DM. 1998. Importance of species selection in drug toxicity testing. Toxicol. Lett. 102-103: 545-550. https://doi.org/10.1016/S0378-4274(98)00263-X
  16. 1997. [OECD series on principles of good laboratory practice and compliance monitoring]. Ann. Ist. Super. Sanita. 33: 1-172.
  17. Maron DM, Ames BN. 1983. Revised methods for the Salmonella mutagenicity test. Mutat. Res. 113: 173-215. https://doi.org/10.1016/0165-1161(83)90010-9
  18. Green MH, Muriel WJ. 1976. Mutagen testing using TRP+ reversion in Escherichia coli. Mutat. Res. 38: 3-32. https://doi.org/10.1016/0165-1161(76)90076-5
  19. Japanese environmental mutagen society-mammalian mutagenicity study group. 1988. Atlas on chromosome aberration induced by chemicals.
  20. Schmid W. 1975. The micronucleus test. Mutat. Res. 31: 9-15. https://doi.org/10.1016/0165-1161(75)90058-8
  21. Hayashi M, Sofuni T, Ishidate M, Jr. 1983. An application of Acridine Orange fluorescent staining to the micronucleus test. Mutat. Res. 120: 241-247. https://doi.org/10.1016/0165-7992(83)90096-9
  22. Kral J, Pikula J, Bandouchova H, Damkova V, Hilscherova K, Misik J, et al. 2012. Avian high-dose toxicity of cyanobacterial biomass. Neuro. Endocrinol. Lett. 33 Suppl 3: 161-165.
  23. Namikoshi M, Sivonen K, Evans WR, Carmichael WW, Sun F, Rouhiainen L, et al. 1992. Two new L-serine variants of microcystins-LR and -RR from Anabaena sp. strains 202 A1 and 202 A2. Toxicon. 30: 1457-1464. https://doi.org/10.1016/0041-0101(92)90521-6
  24. Carmichael WW. 1992. Cyanobacteria secondary metabolites--the cyanotoxins. J. Appl. Bacteriol. 72: 445-459. https://doi.org/10.1111/j.1365-2672.1992.tb01858.x
  25. Taton A, Lis E, Adin DM, Dong G, Cookson S, Kay SA, et al. 2012. Gene transfer in Leptolyngbya sp. strain BL0902, a cyanobacterium suitable for production of biomass and bioproducts. PLoS One 7: e30901. https://doi.org/10.1371/journal.pone.0030901