DOI QR코드

DOI QR Code

Artifacts and Troubleshooting in Intraoperative Neurophysiological Monitoring

수술중신경계감시검사에서 발생하는 인공산물의 종류와 해결 방법

  • Lim, Sung Hyuk (Department of Neurology, Institute of Neuroscience Center, Samsung Medical Center) ;
  • Kim, Kap Kyu (Department of Rehabilitation Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital) ;
  • Jang, Min Hwan (Department of Neurology, Institute of Neuroscience Center, Samsung Medical Center) ;
  • Kim, Ki Eob (Department of Neurology, Korea University Anam Hospital) ;
  • Park, Sang-Ku (Department of Neurosurgery, Konkuk University Medical Center)
  • 임성혁 (삼성서울병원 뇌신경센터 신경과) ;
  • 김갑규 (가톨릭대학교 서울성모병원 재활의학과) ;
  • 장민환 (삼성서울병원 뇌신경센터 신경과) ;
  • 김기업 (고려대학교 안암병원 신경과) ;
  • 박상구 (건국대학교병원 신경외과)
  • Received : 2020.12.28
  • Accepted : 2021.01.25
  • Published : 2021.03.31

Abstract

The types of artifacts that are observed in intraoperative neurophysiological monitoring (INM) is truly diverse. The removal of artifacts that interfere with the examination is essential. In addition, improving the quality of the examination by removing artifacts is a reflection of the competency of the examiner and is also the best way to ensure patient safety. However, if knowledge of the equipment or anesthesia in the operating room is insufficient due to lack of experience, artifacts cannot be removed even with a method appropriate to the situation. If artifacts are not separated and removed, the reading of the examination results in confusion in the operation process. This can be a fatal problem in neurosurgery that requires rapid and sophisticated procedures. In this paper, the causes of artifacts that occur during surgery are classified into electrical factors, non-electrical factors, and other factors, and a method and examination method for removing artifacts according to the specific situation is mentioned. Although the operating room environment is a very critical place to simultaneously consider various scenarios, we hope that a stable and optimal INM will play a role by knowing the types and causes of various artifacts and how to tackle them.

수술중신경계감시에서 혼입되는 artifact의 종류는 매우 다양하고 검사에 방해 되는 artifact의 제거 또한 필수적이다. 그리고 artifact를 제거해서 검사의 질을 향상시키는 것이 검사자의 역량이며 환자의 안전을 위한 최선의 방법이다. 하지만 경험이 부족해서 수술실의 장비나 마취에 관한 사항들에 대한 숙지가 미흡한 경우 상황에 맞는 적절한 방법으로 artifact를 제거할 수 없다. 만약 artifact가 구별 및 제거되지 않고 진행된 검사의 판독은 수술 진행에 혼선을 초래하며 이는 신속하고 정교함이 요구되는 신경외과 수술에 치명적인 문제가 될 수 있다. 본 논문에서는 수술 중에 발생하는 artifact의 원인을 전기적요인과 비전기적인 요인 그리고 기타 요인들로 분류하였고 상황에 맞게 artifact를 제거하는 방법과 검사법에 대해 언급하였다. 수술실의 환경이 동시에 여러가지 상황을 고려해야 하는 매우 민감한 조건이지만, 다양한 artifact의 형태와 원인을 숙지하여 안정적이고 원활한 수술중신경계감시가 되길 바란다.

Keywords

References

  1. Macdonald DB. Intraoperative motor evoked potential monitoring: overview and update. J Clin Monit Comput. 2006;20:347-377. https://doi.org/10.1007/s10877-006-9033-0
  2. Park SK, Hyun CH, Lim SH, Park CW, Park JW, Kim DJ, et al. Basic techniques of intraoperative neurophysiological monitoring. Korean J Clin Lab Sci. 2013;45:77-85.
  3. Kaye AD, Davis SF. Principles of neurophysiological assessment, mapping, and monitoring. 1st ed. London: Springer; 2014. p4-10.
  4. Husain AM. A practical approach to neurophysiologic intraoperative monitoring. 1st ed. New York: Demos; 2014. p9-87.
  5. Suh JS, Ko JH, Oh SK, Suh DK, Lee JW, Oh SJ, et al. Assessment of dispersive pad Site burns with electrosurgical unit. J Korean Burn Soc. 2005;8:195-200.
  6. Legatt AD. Mechanisms of intraoperative brainstem auditory evoked potential changes. J Ciln Neurophysiol. 2002;19:396-408. https://doi.org/10.1097/00004691-200210000-00003
  7. Carrabba G, Mandonnet E, Fava E, Capelle L, Gaini SM, Duffau H, et al. Transient inhibition of motor function induced by the Cavitron ultrasonic surgical aspirator during brain mapping. Neurosurgery. 2008;63:178-179. https://doi.org/10.1227/01.NEU.0000335087.85470.18
  8. Shiban E, Krieg SM, Obermueller T, Wostrack M, Meyer B, Ringel F. Continuous subcortical motor evoked potential stimulation using the tip of an ultrasonic aspirator for the resection of motor eloquent lesions. J Neurosurg. 2015;123:301-306. https://doi.org/10.3171/2014.11.JNS141555
  9. Assina R, Rubino S, Sarris CE, Gandhi CD, Prestigiacomo CJ. The history of brain retractors throughout the development of neurological surgery. Neurosurg Focus. 2014;36:1-12. https://doi.org/10.3171/2014.2.FOCUS13564
  10. Kim SH, Jin SJ, Karm MH, Moon YJ, Jeong HW, Kim JW, et al. Comparison of false-negative/positive results of intraoperative evoked potential monitoring between no and partial neuromuscular blockade in patients receiving propofol/remifentanil-based anesthesia during cerebral aneurysm clipping surgery: a retrospective analysis of 685 patients. Medicine. 2016;95:e4725. https://doi.org/10.1097/MD.0000000000004725
  11. Lee EM. The effect and proper usage of anesthetic agents on intraoperative neurophysiological monitoring. J Intraoper Neurophysiol. 2020;2:33-41. https://doi.org/10.33523/join.2020.2.1.33
  12. Kim SH, Park SB, Kang HC, Park SK. Intraoperative neurophysiological monitoring and neuromuscular anesthesia depth monitoring. Korean J Clin Lab Sci. 2020;52:317-326. https://doi.org/10.15324/kjcls.2020.52.4.317
  13. Tomio R, Akiyama T, Ohira T, Yoshida K. Effects of transcranial stimulating electrode montages over the head for lower-extremity transcranial motor evoked potential monitoring. J Neurosurg. 2016;126:1951-1958. https://doi.org/10.3171/2016.7.JNS16643
  14. Kim DY. Basic principles of electrical stimulation and recording for intraoperative neurophysiological monitoring. J Intraoper Neurophysiol 2020;2:17-26. https://doi.org/10.33523/join.2020.2.1.17
  15. Pyun SB, Practical Instrumentation in Electrodiagnosis. J Korean Assoc EMG Electrodiagn Med. 2001;3:1-12.