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Blended-Transfer Learning for 
Compressed-Sensing Cardiac CINE MRI

INTRODUCTION

Cardiac CINE magnetic resonance imaging (MRI) is a useful imaging method for 
diagnosing various heart diseases (1, 2). To suppress cardiac and respiratory motions, 
signals are generally measured in synchronization with ECG signals of breath-
holds. Performing compressed sensing (CS) using sampling below the Nyquist rate is 
useful for measuring multi-slice cardiac CINE images within a few breath-holds (3, 
4). Minimization of the L1-norm has been used to reconstruct undersampled data. 
However, reconstruction of undersampled data requires considerable time by iteratively 
applying a nonlinear solution (5).
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Purpose: To overcome the difficulty in building a large data set with a high-quality in 
medical imaging, a concept of 'blended-transfer learning' (BTL) using a combination 
of both source data and target data is proposed for the target task. 
Materials and Methods: Source and target tasks were defined as training of the 
source and target networks to reconstruct cardiac CINE images from undersampled 
data, respectively. In transfer learning (TL), the entire neural network (NN) or some 
parts of the NN after conducting a source task using an open data set was adopted 
in the target network as the initial network to improve the learning speed and the 
performance of the target task. Using BTL, an NN effectively learned the target data 
while preserving knowledge from the source data to the maximum extent possible. 
The ratio of the source data to the target data was reduced stepwise from 1 in the 
initial stage to 0 in the final stage.
Results: NN that performed BTL showed an improved performance compared to those 
that performed TL or standalone learning (SL). Generalization of NN was also better 
achieved. The learning curve was evaluated using normalized mean square error 
(NMSE) of reconstructed images for both target data and source data. BTL reduced 
the learning time by 1.25 to 100 times and provided better image quality. Its NMSE 
was 3% to 8% lower than with SL.
Conclusion: The NN that performed the proposed BTL showed the best performance 
in terms of learning speed and learning curve. It also showed the highest 
reconstructed-image quality with the lowest NMSE for the test data set. Thus, BTL 
is an effective way of learning for NNs in the medical-imaging domain where both 
quality and quantity of data are always limited.
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Recently, deep learning has been applied to reduce the 
reconstruction time or improve image quality (6). Wang et 
al. (7) have proposed a framework for reconstructing high-
quality images using a fully convolutional network (FCN). 
Although the proposed framework has a flexible structure, 
as FCN could be applied to a fraction of an image, it requires 
a post-processing after applying FCN and considerable 
time for learning as well. Yang et al. (8) have proposed 
ADMM-net which implements a classical algorithm called 
the Alternating Direction Method of Multipliers (ADMM) 
using a deep neural network (NN). Although ADMM-
net has successfully reduced the reconstruction time, its 
performance is limited compared to the original algorithm. 

Yang et al. (9) have proposed a De-Aliasing Generative 
Adversarial Network (GAN) that can remove artifacts due 
to undersampling. For the generator to generate an image 
similar to the real one, various terms are added to the loss 
function and a method for achieving stable learning is 
presented. Compared with various CS MRI methods, GAN 
shows improved performance with image-reconstruction 
time considerably reduced. However, as with other GAN-
based studies (10, 11), the risk of NNs creating virtual 
artifacts is increased, especially at high compression 
ratios (CRs). In addition, its network performance is not 
satisfactory when the similarity between clinical data and 
learning data is low. Recently, some variants of GAN have 
been proposed to solve these problems. For example, Yu et 
al. (12) have proposed a conditional GAN. Zhu et al. (13) 
have reported a lesion focused super-resolution approach. 
Wang et al. (14) have shown an improved cyclic GAN. 
Schlemper et al. (15) and Zhu et al. (16) have applied deep 
networks for CS diffusion tensor cardiac magnetic resonance 
(DT-CMR). Hyun et al. (17) have applied deep learning for 
undersampled MRI reconstruction of head images using 
U-net (18). They combined deep learning and k-space 
correction with measured data and achieved a remarkable 
performance, far exceeding existing CS algorithms. Kofler et 
al. (19) have also shown that a modified U-net outperforms 
the existing iterative reconstruction method in image 
quality and computation time. The U-net is widely used in 
many applications because of its excellent performance. In 
this study, we also used U-net to reconstruct dynamic CS 
cardiac MRI, in contrast to the reconstruction of static head 
images in previous studies. The main contribution of this 
study, however, is the improved learning method of NNs. 
This will be discussed later.

Due to difficulty in building a large data set with high-
quality in medical imaging, transfer learning (TL) has been 

tried (20, 21). In TL, two domains or tasks are defined, 
namely the source task and the target task. The source 
task typically performs pre-learning for NNs using a large 
amount of open data (source data) and the target task 
refines pre-learned NNs for target purposes. For example, 
Oquab et al. (22) have proposed a framework for TL between 
two data sets with different categories of labeling. Ciresan 
et al. (23) have modified the number of nodes in the fully 
connected layer to reduce the cost of learning classifier 
and improve performance. Meng et al. (24) have used TL to 
diagnose liver fibrosis using ImageNet as source learning. 
Because many TL-based studies have different applications 
and purposes, the target task should determine the manner 
to use some or entire NNs in the source task. For MRI, Chen 
et al. (25) have used TL for automatic segmentation of left 
ventricle myocardium in porcine cardiac cine MRI. Dar et al. 
(26) have used TL for CS brain study.

In this study, the open data set released by York University 
(27) was used for the source task. This open data set is 
called 'Y-data set.' Subsequently, the NN conducts fine-
tuning using a data set measured for the target task. The 
measured data set is called 'K-data set.' Both Y-data and 
K-data sets are k-space data for cardiac CINE images with 
short-axis view. The Y-data set comprises clinical (patient) 
data obtained from 1.5T MRI. The K-data set comprises 
volunteer images obtained from 3.0T MRI. Both the data 
sets have different scan parameters.

NNs that conducted the source task showed improved 
learning speed, performance, and generalization for 
the target task. However, as the target task progressed, 
knowledge from the source task quickly decayed as filter 
kernels or weights of the NN changed. Therefore, knowledge 
of source task was not maintained correctly using TL and 
knowledge transfer did not work properly. The motivation 
for this study was to find a better learning method for 
compressed sensing (CS) cardiac CINE MRI. Scanning 
multi-slice CINE data in a few breath-holds and real-
time reconstruction with diagnostic quality are critical for 
clinical applications. Machine learning seems to be the first 
choice for the task.

We proposed a 'blended-transfer learning' (BTL) to 
mitigate data problems by effectively utilizing open data 
sets for both pre-training and target task. We quantified 
both source knowledge and the newly acquired target 
knowledge in terms of normalized mean square error 
(NMSE). The learning method can optimize the network for 
both source and target tasks. To the best of our knowledge, 
no similar approach has been attempted for CS cardiac CINE 
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MRI. By using a combination of both source data and target 
data for the target task, network learns the target task well 
while preserving the source knowledge to the maximum 
extent possible. BTL contributes to the generalization of 
the NN by accumulating knowledge from both source and 
target tasks. It can reduce the conflict of knowledge in 
different domains. 

MATERIALS AND METHODS

Data
Two types of data sets, 'K-data set' and 'Y-data set', were 

used. They comprised k-space data of cardiac CINE images 
with short-axis view. Multi-slice cardiac CINE MRI scans 
three-dimensional (3-D) heart as a function of time, which 
may be presented using four variables, kx, ky, z, t with sizes 
of Nx, Ny, Nz, and Nt, respectively. Terms Nx and Ny denote 
sizes of the cross-sectional image along the x-axis and 
y-axis. Nz is the number of slices and Nt is the number of 
frames for a cycle of cardiac motion. Although cardiac CINE 
MRI data are 4-D data, the input to the NN is generally 2-D 
sectional images to reduce complexity.

The k-space data measured for all phase-encoding 
gradient values are defined as 'full data' which generate 
'ground truth image' via inverse 2-D Fourier transform. 
These full data were undersampled via computer simulation 
along the phase-encoding axis to generate undersampled 
data. Sampling locations or mask were generated in the 
phase encoding direction as a function of cardiac phase 
to accommodate CINE imaging. Since the sampling period 
along the frequency encoding direction was relatively short, 
undersampling was not necessary. Sampling followed a 
modified Gaussian density function centered at the dc of 
the phase-encoding axis in the spatial frequency domain (3). 
Considering various CS applications of cardiac CINE MRI, 
the CR was chosen as 2, 3, 4, and 8.

The K-data set comprised full k-space data corresponding 
to a total of 2016 full 2-D sectional images obtained 
with a 3.0T MRI system (Siemens Healthcare, Erlangen, 
Germany) using a balanced-steady-state free precession 
(SSFP) sequence from eight healthy volunteers. A 5-channel 
cardiac array coil was used and the sensitivity map was 
acquired by a low-resolution scan separately from the 
main scan. The sensitivity map was used to reconstruct a 
combined image from channel images. The combined image 
was assumed to be ground truth image. For simplicity, 
k-space data were generated by 2-D Fourier transform 

of the combined image. Training data set was organized 
from Volunteers 1-4 (total 1104 images) and the test data 
set was organized from Volunteers 5-8 (total 912 images) 
to ensure that both data sets were disjoint from separate 
subjects. All studies were approved by the Institutional 
Review Board. Written informed consents were obtained 
from all volunteers participated in this study.

For the training data set, full k-space data of Volunteers 
1-4 were undersampled using CRs of 4 and 8. They were 
subsequently augmented thrice to obtain 6624 images. Data 
augmentation was performed using vertical flip, horizontal 
flip, and 90° rotation with random probabilities. For the 
test data set, full k-space data of Volunteers 5-8 were 
undersampled using CRs of 2, 3, 4, and 8. Consequently, the 
test data set comprised 912 images for each CR to assess 
the performance of the NN in accordance with the CR.

To supplement the K-data set of fewer applicants, an 
open data set disclosed by York University was used for the 
source task (27). This York University data set comprised 
33 subjects with 7980 sectional images, among which 
data from one outrageous subject were excluded. Sectional 
images out of the heart region were also excluded. 
Consequently, 5220 clinical sectional images from 32 
subjects were selected as ground truth images and full 
k-space data was generated via the 2-D Fourier transform 
of ground truth images. The training data set was organized 
from Subjects 1-22 (total 3440) and the test data set 
was organized from Subjects 23-32 (total 1780). For the 
training data set, full k-space data from 22 subjects were 
undersampled using CRs of 4 and 8 without augmentation 
to obtain 6880 images. Undersampling was performed 
similarly as that for the K-data set. Images were arbitrarily 
readjusted to either 'as is,' 'vertical flip,' 'horizontal flip,' or 
'90° rotations.' For the test data set, full k-space data from 
10 subjects were undersampled using CRs of 2, 3, 4, and 8. 
Consequently, the test data set comprised 1780 images for 
each CR. 

Three sample ground truth images of K-data (left) and 
Y-data (right) sets are depicted in Figure 1. Image and scan 
parameters for K-data and Y-data sets are summarized in 
Table 1.

Reconstruction of CS CINE MRI Using Deep NN
Figure 2 depicts learning procedures of the NN (upper) 

to reconstruct CS CINE MRI. The process began with 
interpolation of missing data due to undersampling using 
data in adjacent frames. The last frame was assumed to be 
adjacent to the first one because of cyclic motion of the 
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heart. In addition, if no data was measured in all frames, 
missing data were assumed to be zero. If all missing data 
were interpolated, an inverse 2-D Fourier transform was 
applied to perform initial image reconstruction. Images 
achieved via the initial reconstruction had aliasing and 
relatively poor spatial and temporal resolutions compared 
with those of ground truth images. The deep NN aims 
to reduce aliasing and improve the quality of the initial 
reconstructed images. The image was subtracted from 
the ground truth image to make a 'difference image.' The 
reconstructed image was normalized using Eq. [1] and used 
as input to the NN. The difference image was normalized 
and shifted using Eq. [2]. It was used as the label to the NN. 
The input and the label pair is used as a unit element for 
the training data set. 

i (x, y) =
I (x, y)
MAX

 [1]

d (x, y) =
D (x, y)

+ 0.5
MAX

 [2]

In Eq. [1], I(x,y) denotes the initial reconstructed image 
and MAX denotes a value given for each participant. MAX 
could be either the maximum value or any representative 
value of the entire multi-slice, and multi-frame images 
included in each examination of a participant. The 
normalized image i(x,y) was truncated to 1 or 0, respectively. 
If i(x,y) is greater than 1 or below 0; i(x,y) will lie between 
0 and 1. In Eq. [2], D(x,y) denotes the difference image and 
MAX denotes the value defined in Eq. [1]. Although the 
difference image D(x,y) would be approximately distributed 
from -MAX to MAX, most values were near zero. The 
normalized and shifted difference image d(x,y) would be 
close to 0.5 for most values. If d(x,y) is greater than 1 or less 
than 0, it will be set to be 1 or 0, respectively.

The NN adjusts filter kernels and weights in such a 
manner that the output for a given input matches the label. 
Initial values of both filter kernels and weights affect the 
performance and learning speed. The NN was implemented 
using Keras based on TensorFlow. The learning for NN takes 
considerable time. However, once the learning is completed, 
reconstruction using NN is significantly faster than that 
using traditional CS algorithms.

From Figure 2, it is evident that for reconstruction 
(lower part in Fig. 2), the input has similar process as that 
for learning (upper part in Fig. 2). The NN estimates the 
normalized difference image as output. The following 
difference image is obtained via shift and denormalization:

O (x, y) = MAX ·[o (x, y) - 0.5] [3]

where MAX is the value defined in Eq. [1], o(x,y) is the 
output of the NN, and O(x,y) is the estimated difference 
image. Refined reconstruction is performed by adding the 
estimated difference image to the initial reconstructed 
image. The refined reconstructed image has less aliasing 

Table 1. Scan and Image Parameters for K-data and Y-data Sets

K-data set Y-data set

Main field strength 3.0T 1.5T

Sequence Balanced SSFP Balanced SSFP

TR/TE 3.88/1.94 ms N/A

Transverse-matrix size 256 × 256 256 × 256

Transverse resolution 1.37 mm 0.93-1.64 mm

Field-of-view (FOV) 350 × 350 mm2 240-420 × 240-420 mm2

Number of slices 12 5-11

Slice thickness 8 mm 6-13 mm

Number of frames 16-24 20

Temporal resolution 31.04 ms N/A

Application Target learning 
(fine tuning)

Source learning

SSFP = steady-state free precession; TE = echo time; TR = repetition time

Fig. 1. Three sample images for the K-data set (left) and Y-data set (right). Each image is from a different subject. The 
K-data set is used for the target task and the Y-data set is used for the source task.
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and better quality than the initial reconstructed image.

Architecture of the Deep NN
The designed deep NN comprises multi-layer, multi-stage 

convolutional NNs (CNNs) (18). It contains encoding and 
decoding processes connected in a hierarchical structure. 
It has an overall shape of 'U,' as depicted in Figure 3. 
In the encoding process, multi-stage convolutions (3 × 
3) and max-pooling (2 × 2) were applied for each layer. 
Convolutions were used to extract features from the input. 
Features extracted were then stored in the feature map. 
Kernels were adjusted such that the output of the NN 
matched the label. Max-pooling was performed to reduce 
the input size. Reduced input was then convolved with 
a kernel of the same size. The aforementioned step was 
equivalent to performing a convolution with a kernel twice 
larger than that used in the previous layer. Therefore, the 
max-pooling enables extraction of features of various sizes. 
Notably, the output of each layer in the encoding process 
was the input of the next layer. It was also concatenated 
to the input in the decoding process (skip connection) 
of the same level of the layer. As the number of layers 
increased, the size of the input decreased, while the number 
of channels increased. In the last layer of the encoding 

process, the input size was 16 × 16 and the channel size 
was 1024. 

In the decoding process, transpose-convolution (2 × 
2) and multi-stage convolutions (3 × 3) were repeatedly 
performed to increase the size of the feature map and 
decrease the channel size. In the final layer of decoding, 
the output size was 256 × 256 and the channel size was 1 
(same size as that of the input image). A Rectified Linear 
Unit (ReLU) was used as an activation function for all 
convolutions of size (3 × 3) in both encoding and decoding 
layers. The convolution at the final stage of the output layer 
used a kernel of size (1 × 1) and the sigmoid function as the 
activation function to make the output range from 0 to 1.

Learning Methods
Filter kernels of the NN were adjusted using the training 

data set. Initial values of filter kernels considerably affected 
both learning speed and performance. The initialization was 
considered in terms of the following learning methods.

(1) Standalone Learning (SL)
In SL, filter kernels are randomly initialized. In this study, 

we used the method proposed previously (28). Because no 
prior knowledge was included, the method was named SL.

Fig. 2. Learning (upper) and reconstruction (lower) of the neural network.
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(2) Transfer Learning (TL)
Sometimes, it is desirable to transfer some or the entire 

NN (source network) that has undergone pre-learning using 
similar kinds of data (source data) to another network 
(target network) to improve the learning speed and network 
performance. Hence, it is called 'TL.' In this study, filter 
kernels of the NN that had performed the source task were 
used as initial values of the NN for the target task. 

(3) Blended-Transfer Learning (BTL)
Filter kernels obtained from the source task can 

considerably improve the learning speed and network 
performance for the target task. However, initial values from 
the source task significantly changed in a few epochs of the 
target task. Therefore, we proposed 'BTL' by appropriately 
blending both source (Y-data set) and target (K-data set) 
data sets for the target task. Using a mixed data set, the 
target network could learn the target data while preserving 
the knowledge from the source task to the maximum extent 
possible. 

RESULTS

NNs that can perform learning using various methods 
are investigated. The SL-based NN performed the target 
task using the K-data set via random initialization of 
filter kernels. Both TL- and BTL-based NNs performed pre-
learning first using the Y-data set. For pre-learning, filter 
kernels were randomly initialized as in the case of SL. These 
filter kernels obtained using the source task were set to 
the target NN as initial values. The NN further conducted 
learning using the K-data set in the case of TL. The BTL-
based NN performed learning using both the K-data and 
Y-data sets. The learning rate was optimally chosen for each 
data set as follows: 1.0 × 10-5 for the K-data set and 8.0 
×10-5 for the Y-data set. For the combination of K-data and 
Y-data sets, hyper parameters for the target data (K-data) 
set were chosen. The batch size was 32 and the binary 
cross-entropy was selected as the loss function.

In Figure 4, learning curves of NNs after performing SL 
and TL are depicted. The horizontal axis represents the 
number of epochs and the vertical axis represents NMSE. 

Fig. 3. Architecture of the neural network to reconstruct compressed-sensing cardiovascular CINE MRI. The network is 
shaped like a 'U.' Main components of the neural network are CNNs. Max-pooling and transpose convolution are applied for 
downsampling and upsampling of the input, respectively. 



www.i-mri.org16

Blended-Transfer Learning for CS CINE MRI | Seong Jae Park, et al.

These learning curves were evaluated using the K-data set 
(training data). Generally, NMSE decreased as the number 
of epochs increased. Because filter kernels obtained from 
the source task were transferred to the target NN in the 
case of TL, the amount of learning in the source task might 
affect the learning performance in the case of TL. We used 
the number of epochs in the source task as the amount 
of learning. The number after the hyphen represents 
the number of epochs in the source task. As depicted in 
Figure 4, NNs with large epochs in the source task showed 

satisfactory performance. For example, TL-50 showed a 
lower NMSE than that TL-10 for a given epoch. Comparing 
learning curves of TL with those of SL, TL-10, -20, and -50 
showed lower NMSEs than SL. Particularly, at early epochs, 
NMSEs for TL decreased more rapidly than those for SL. For 
example, the NMSE of TL-20 (26) or TL-50 (3) was lower 
than that of SL (100). The number in parenthesis represents 
the number of epochs in the target task. This implies that TL 
can improve the learning speed and performance of NN in 
the target task.

BTL comprises 4 stages, each of which consists of 10 
epochs. Ratios of the source (Y-data) to target (K-data) 
data sets are 1, 0.5, 0.25, and 0 as stages progress. In each 
stage, K-data set was used while Y-data set was randomly 
sampled according to the ratio. Sampled data were restored 
for the next stage. For example, the data set in stage 2 
comprised 9936 images, of which 6624 were from the 
K-data set and 3312 were from the Y-data set. 

Learning curves for both TL and BTL are depicted in 
Figure 5. BTL used the same initial filter kernels as those 
used by TL. BTL with larger pre-learning showed a better 
performance as observed in TL. In addition, BTL achieved a 
lower NMSE than TL. For example, TL-10 (80), TL-20 (26), 
and TL-50 (3) showed similar NMSEs as SL (100), while BTL-
10 (28), BTL-20 (9), and BTL-50 (1) achieved similar NMSEs 
as SL (100). 

The loss of knowledge from the source task was evaluated 
using the NMSE of the source data for the target network as 

Fig. 4. Learning curves of neural networks that have 
conducted SL and TL. The number after the hyphen is the 
number of epochs for the source task. The horizontal axis 
represents the number of epochs for the target task and the 
vertical axis represents the NMSE for the target data. 

Fig. 5. Learning curves of neural networks that have 
conducted TL and BTL. The number after hyphen is the 
number of epochs for the source task. The horizontal axis 
represents the number of epochs for the target task and the 
vertical axis represents the NMSE for the target data. 

Fig. 6. Loss of source knowledge by the target neural 
network is evaluated using the NMSE of the source data. 
NMSE rapidly increases for a few epochs in the case of 
TL, whereas it remains almost constant in the case of BTL 
until the last stage wherein the source data is completely 
excluded for the target task.
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a function of epoch as depicted in Figure 6. The horizontal 
axis represents the number of epochs for the target task 
and the vertical axis represents the NMSE of the source 
data using the target NN. The learning curve of the source 
NN is also depicted using a solid black line. Its horizontal 
and vertical axes represent the number of epochs for the 
source task and the NMSE of source data by the source 
NN, respectively. The source learning curve represents the 
initial NMSE before the target task begins (epoch = 0). 
For example, the initial NMSEs for TL-10 and BTL-10 were 
obtained from the source learning curve with an epoch of 
10 (= 3.8 × 10-3).

As the number of epochs increased in the target task, 
NMSE also rapidly increased in the case of TL as depicted in 
Figure 6. However, the initial NMSE was almost maintained 
for BTL. For example, irrespective of the amount of pre-

learning for BTL, NMSE remained almost intact up to stage 
3 (Y-data/K-data = 0.25). However, for BTL-10 and BTL-
20, the NMSE was somewhat increasing in the final stage 
(stage 4, K-data only). For BTL-50, the NMSE was almost 
retained. Therefore, BTL with a considerable amount of pre-
learning successfully created a network that was optimized 
for both target and source tasks, thereby contributing to 
the generalization of NN via knowledge accumulation.

Feature maps of NNs after performing learning using 
various methods are depicted in Figure 7. The output of the 
final CNN at each layer is visualized using an input image 
in the target (K-data) data set. Because the number of 
channels varied from layer to layer, the feature map was 
averaged over the entire channel values as shown in Eq. [4]. 
In addition, because the ReLU was used as the activation 
function after performing convolution, all feature values 

Fig. 7. Visualization of feature maps of neural networks that have performed learnings using various methods. From top to 
bottom: SL with epoch 100, SL with epoch 200, TL with epoch 40, and BTL with epoch 40. Source tasks were performed with 
epochs of 50 for both TL and BTL.
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were non-negative. The final CNN at the final layer had 
only one channel. Its values ranged from 0 to 1 by applying 
the sigmoid function as the activation function.

F (x, y) = 
1 ∑ f (x, y, cj)N

j = 1

N
 [4]

Sizes of feature maps decreased up to the fifth layer and 
then increased up to the final layer. For comparison, input 

and label data are depicted on the left and right sides in 
Figure 7. Feature maps for the three learning methods 
distinctly differed from one another. These feature maps 
built using SL(100) mainly showed large structures, whereas 
those built using SL(200) showed more detailed structures 
(e.g., see the fifth layer). For TL-50(40) or BTL-50(40), high 
frequency shapes and detailed structures are satisfactorily 
presented, even for a small number of epochs (i.e., 40).

In Figure 8, reconstructed images (upper) and line profiles 
as a function of cardiac phase (lower) using NNs that have 

Fig. 8. Reconstructed images (upper) and line profiles as a function of cardiac phase (lower) using neural networks that 
have performed learning using various methods. The CRs are 4 and 8. From top to bottom: ground truth image, images 
reconstructed using SL with epoch 200, TL with epoch 40, and BTL with epoch 40. Error images are shown in the right to 
ensure better visualization.
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performed learnings using various methods are depicted. 
Test data with CRs of 4 and 8 are depicted. From top to 
bottom, the ground truth image and images reconstructed 
using SL(200), TL-50(40), and BTL-50(40) are depicted. Line 
profiles passing through the myocardium that is shown in 
the ground truth image are vertically stacked according to 
the cardiac phase. Error images between the reconstructed 
images and the ground truth image are depicted in 
right. They were amplified by a factor 4 to ensure better 
visualization. Improvements achieved using the BTL-based 
NN were compared with those achieved using the SL-based 
NN. For example, low frequency oscillation in the ventricle 
was observed in images reconstructed using SL, which was 
reduced using BTL (indicated by arrows). An aliasing error 
existed along the longitudinal direction near the edge in 
profiles in the case of SL. However, the aliasing error was 
reduced in the case of BTL (see arrows in the error images 
of profiles). 

The average NMSE for the test data set is summarized 
in Table 2. It was obtained by taking the arithmetic mean 
of the NMSE of each applicant. In Table 2, one SL-based 
NN was added (top) with 40 epochs to match the number 
of epochs for target task with TL or BTL. From Table 2, it 
was evident that the NN that performed TL or BTL showed 
lower NMSE than the NN that performed SL. The NN 
that performed BTL showed the lowest NMSE for all CRs. 
Although differences in NMSE according to the learning 
method were not considerable, i.e., approximately 3% to 8%, 
they were consistent for all CRs. 

Using Keras (version 2.2.4) in Tensorflow (version 13.1.1) 
on an Intel(R) Xeon(R) CPU e5-2620 v4 @ 2.1GHz and 
NVIDIA TITAN RTX system, the elapsed times for the 
learnings of the NNs in Table 2 were measured to be 
approximately 83 min for SL(40), 409 min for SL(200), 

82 min for TL(40), and 119 min for BTL(40). The elapsed 
time of the source task was 107 min with 50 epochs. For 
reconstructing the test data set, the elapsed time was 
approximately 8 s for each CR, equivalent to 8.73 ms per 
image.

DISCUSSION

In preparation of the data set, assumptions were made 
to simplify training of the NN. The ground truth image in 
Figure 2 was assumed to be a magnitude image, so were 
the initial reconstructed image (input) and the label to the 
NN. If complex value reconstruction is needed, NNs might 
be constructed separately for real and imaginary parts 
of the input and label. For multi-channel data acquired 
using a cardiac phased array coil, combined image and 
corresponding k-space data are used for training and test 
of the NN. Undersampling of k-space data corresponding 
to the combined image instead of individual channel data 
reduced training time considerably. In real applications, 
each channel data should be reconstructed using the 
trained NN. The coil sensitivity mentioned in the data 
section is needed to reconstruct a combined image from 
these channel images.

The designed NN is based on CNN which assumes 2-D 
input and 2-D output. The filtered image obtained by 
convolution of the input image with a 2-D kernel of size 
(3 × 3) reflects characteristics of the input image. For 
example, a high-pass filter kernel would generate an edge 
image and a low-pass filter kernel would generate an image 
with contrast. If many filter kernels are used, we can obtain 
various image characteristics that can be stored in channels. 
Feature map is a 3-D matrix in which 2-D filtered images 
are stacked along the channel. The 3-D feature map is an 
input to the next convolution with a 3-D filter kernel of size 
(3 × 3 × number of channels). The 2-D image obtained by 
the convolution of 3-D feature map with 3-D filter kernel 
would be stacked to form a new 3-D feature map. These 
kernels are adjusted to make the output of the NN match 
the label data.

Because the output of the convolution is a weighted 
sum of the input within the kernel and because the ReLU 
truncates output that is less than zero, the output of the 
CNN depends on the input and its variation restricted to a 
certain bound. Although the max-pooling used to reduce 
the spatial resolution of the input may change the shape 
of the input, the maximum variation is limited to 1 pixel. 

Table 2. Average NMSE of Reconstructed Images by NNs Using 
Various Learning Methods is Shown in 10-3 Unit 

Learning method CR = 2 CR = 3 CR = 4 CR = 8

SL(40)a 2.08 3.37 4.16 7.95

SL(200)b 2.03 3.26 4.03 7.67

TL-50(40)c 2.02 3.21 3.97 7.48

BTL-50(40)d 2.01 3.20 3.96 7.35
aSL with 40 epochs for the target task.
bSL with 200 epochs for the target task.
cTL with 50 and 40 epochs for source and target tasks, respectively.
dBTL with 50 and 40 epochs for source and target tasks, respectively.
BTL = blended-transfer learning; NMSE = normalized mean square error; NN = 
neural network; SL = standalone learning; TL = transfer learning 
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Because the transpose convolution that is used to increase 
the spatial resolution is based on the convolution process, 
a linear relationship between the input and output is 
maintained. Furthermore, each kernel is convolved with 
the entire input (3-D feature map). Therefore, update of 
the kernel is affected by the entire input rather than local 
structures of the input. 

The function of the CNN is different from that of fully 
connected network or GAN. A fully connected network 
can move a node to any location. The number of nodes 
involved in determining its weight is also relatively small, 
thereby simplifying the creation of a local structure. The 
GAN can also add local structures from the discriminator or 
generator. Due to the nature of medical imaging, creating 
or erasing local structures unrelated to the input can result 
in misdiagnosis. 

As depicted in Figure 3, a fully connected network and 
GAN are not involved in the NN. Therefore, the NN may 
learn from the data in the manner of converting a coarse 
image to a refined one. However, it cannot extract or 
store local structures from the data and insert them into 
an unrelated input image. For example, the source task is 
performed using clinical data. However, disease-related 
structures are not stored. Such structures cannot appear 
during the target task. Therefore, a CNN-based network 
with BTL or TL can be safely used for clinical purposes.

In clinical applications, building an optimal NN for 
each CR is time consuming and expensive. In addition, it 
is difficult to define the exact CR because field-of-view 
(FOV) and organ (heart) size vary from subject to subject. 
Therefore, a universal NN was designed with excellent 
performance using CRs of 2, 3, 4, and 8. To this end, data 
with CRs of 4 and 8 were mixed and used for training the 
NN.

Using TL, the NN learns the target task faster by using 
the source network as initial values of the target network. 
However, these initial values rapidly changed as the target 
task progressed. To accommodate the generalization of the 
NN, knowledge in one domain should not overwrite that 
in another domain. TL transfers the source knowledge to 
the target network as initial values, which may be easily 
changed. Similarly, BTL transfers the source knowledge to 
the target network as initial values. However, it is involved 
in subsequent network learning by providing a combination 
of source data and target data for the target task. Therefore, 
learning from the target data is performed and source 
knowledge is simultaneously refreshed using the source 
data included. Because the target task is the ultimate goal 

of forming the NN, the amount of source data is reduced as 
the stage of the target task increases. 

Learning curves with BTL showed lower NMSE by 0.1 to 0.2 
dB than those with TL as depicted in Figure 5. Interestingly, 
learning using a combination of target data and source data 
provided a lower NMSE than that provided upon learning 
using only the target data, although the evaluation was 
performed using only target data. The kernels obtained 
using the gradient descent algorithm with the target data 
might still need to reach the global optimum. Because 
many filter kernels are adjustable and because data can 
contradict each other sometimes, a unique solution might 
not exist. Therefore, both initial values of the network and 
the path to the final configuration are important. Using a 
combination of source data and target data for a target 
task, the NN may learn a smooth transition from the source 
knowledge to target knowledge, consequently finding a 
solution to satisfy both source and target data with minimal 
adjustments. To avoid excessive data growth, the amount 
of the source data is set to be equal to the amount of the 
target data in the initial stage. The amount reduced as the 
stage increased, finally becoming zero at the final stage 
(i.e., stage 4). Because learning at each stage is a transition 
to the final network configuration, learning at each stage 
is not necessarily high. It was limited to 10 epochs in our 
application.

The extent of the source knowledge lost as the target task 
progressed was assessed using the NMSE of the source data 
with the target network. As depicted in Figure 6, NMSE 
rapidly increased from the beginning of target task (epochs 
1 and 2) with TL, meaning that initial values adopted from 
the source network had considerably changed at the early 
stage of the target task. Meanwhile, the NMSE of the source 
data was almost maintained with BTL while the target task 
was effectively achieved as depicted in Figure 5. Therefore, 
BTL formed a network configuration that satisfied the target 
task without significant loss of the source knowledge. 

Notably, the learning speed or performance of the NN 
varied depending on the learning method, even for the 
same target data and network structure. Feature maps 
were also different depending on the learning method (Fig. 
7). Because there exist many adjustable filter kernels in 
deep NNs, different configurations are allowed for similar 
performance indicators. Accordingly, BTL is a means to 
construct a better NN configuration. 

As depicted in Figure 8, the highest quality was obtained 
for reconstructed images and profiles when the NN 
performed BTL. As shown in Table 2, the lowest NMSE of 
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reconstructed images was obtained in the case of BTL. 
In this case, visual perception and evaluation based on 
NMSE agreed well, but not always. Seitzer et al. (29) have 
proposed a hybrid method in which a visual refinement 
component is learnt on an MSE based reconstruction 
network.

Both K-data and Y-data sets are cardiac short-axis 
view data obtained using a balanced SSFP sequence. The 
K-data set was obtained from 3.0T MRI for volunteers and 
Y-data set was obtained from 1.5T MRI for patients. The 
Y-data set had lower image quality than the K-data set. 
In addition, aliasing error was present along the direction 
of the phase-encoding gradient. Despite these differences, 
TL or BTL resulted in significant improvements and shorter 
learning times compared with SL, meaning that a high 
similarity between source data and target data might not 
be necessary for TL or BTL. Further application of BTL with 
two data sets that have low similarity to each other is a 
challenge to be addressed.

In conclusion, we developed BTL to improve the 
generality of a NN with a limited amount of data. BTL 
used a combination of source and target data sets for the 
target task. Consequently, the NN learned the target data 
while retaining source knowledge to the maximum extent 
possible. The NN that performed the proposed BTL showed 
the best performance in terms of learning speed and 
learning curves. It showed the highest reconstructed-image 
quality with the lowest NMSE for the test data set. Thus, 
BTL is an effective way of learning for NNs in the medical-
imaging domain where both quality and quantity of data 
are always limited.
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