DOI QR코드

DOI QR Code

Antioxidant, Cytotoxicity and Cytoprotective Potential of Extracts of Grewia Flava and Grewia Bicolor Berries

  • Masisi, Kabo (Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology) ;
  • Masamba, Riach (Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology) ;
  • Lashani, Keletso (Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology) ;
  • Li, Chunyang (Department of Nutrition and Health, Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences) ;
  • Kwape, Tebogo E. (Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology) ;
  • Gaobotse, Goabaone (Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology)
  • Received : 2020.05.28
  • Accepted : 2021.03.04
  • Published : 2021.03.31

Abstract

Objectives: Accumulation of cellular reactive oxygen species (ROS) leads to oxidative stress. Increased production of ROS, such as superoxide anion, or a deficiency in their clearance by antioxidant defences, mediates cellular pathology. Grewia Spp fruits are a source of bioactive compounds and have notable antioxidant activity. Although the antioxidant capacity of Grewia Spp has been studied, there is very limited evidence that links the antioxidant activities of Grewia bicolor and Grewia flava to the inhibition of free radical formation associated with damage in biological systems. Methods: This study evaluated the protective effects of Grewia bicolor and Grewia flava extracts against free radical-induced oxidative stress and the resulting cytotoxicity effect using HeLa cells. Antioxidant properties determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and total phenolic content (TPC) assays showed significantly higher (p < 0.05) antioxidant activity in Grewia flava (ethanol extract) than Grewia flava (water extract) and Grewia bicolor (ethanol and water extracts). Results: Using 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide or MTT assay, cytotoxicity results showed that extracts of Grewia bicolor and Grewia flava were less toxic to HeLa cells at tested concentrations compared to the untreated control. This confirmed the low toxicity of these edible fruits at the tested concentrations in HeLa cells. Furthermore, hydrogen peroxide (H2O2)-induced cell loss was effectively reduced by pre-incubating HeLa cells with Grewia bicolor and Grewia flava extracts, with Grewia flava (ethanol extract) revealing better protection. Conclusion: The effect was speculated to be associated with the higher antioxidant activity of Grewia flava (ethanol extract). Additional studies will warrant confirmation of the mechanism of action of such effects.

Keywords

References

  1. Hayakawa M, Kuzuya F. [Free radicals and diabetes mellitus]. Nihon Ronen Igakkai Zasshi. 1990;27(2):149-54. Japanese.
  2. Meydani M, Lipman RD, Han SN, Wu D, Beharka A, Martin KR, et al. The effect of long-term dietary supplementation with antioxidants. Ann N Y Acad Sci. 1998;854(1):352-60. https://doi.org/10.1111/j.1749-6632.1998.tb09915.x
  3. Simonian NA, Coyle JT. Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol. 1996;36:83-106. https://doi.org/10.1146/annurev.pa.36.040196.000503
  4. Halliwell B, Gutteridge JM. The definition and measurement of antioxidants in biological systems. Free Radic Biol Med. 1995;18(1):125-6. https://doi.org/10.1016/0891-5849(95)91457-3
  5. Wang SY, Jiao H. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. J Agric Food Chem. 2000;48(11):5677-84. https://doi.org/10.1021/jf000766i
  6. Packer L. Antioxidant defences in biological systems: an overview. In: Packer L, Traber MG, Xin W, editors. Proceedings of the International Symposium on Natural Antioxidants: molecular mechanisms and health effects. Champaign (IL): AOCS Press; 1996. p. 9-44.
  7. Poli G, Leonarduzzi G, Biasi F, Chiarpotto E. Oxidative stress and cell signalling. Curr Med Chem. 2004;11(9):1163-82. https://doi.org/10.2174/0929867043365323
  8. Stadtman ER. Protein modification in oxidative stress. In: Paoletti R, editor. Oxidative processes and antioxidants. New York (NY): Raven Press; 1994. p. 117-34.
  9. Wang H, Cao G, Prior RL. Total antioxidant capacity of fruits. J Agric Food Chem. 1996;44(3):701-5. https://doi.org/10.1021/jf950579y
  10. Doll R. An overview of the epidemiological evidence linking diet and cancer. Proc Nutr Soc. 1990;49(2):119-31. https://doi.org/10.1079/PNS19900018
  11. Gey KF. The antioxidant hypothesis of cardiovascular disease: epidemiology and mechanisms. Biochem Soc Trans. 1990;18(6):1041-5. https://doi.org/10.1042/bst0181041
  12. Chen XW, Serag ES, Sneed KB, Zhou SF. Herbal bioactivation, molecular targets and the toxicity relevance. Chem Biol Interact. 2011;192(3):161-76. https://doi.org/10.1016/j.cbi.2011.03.016
  13. Fennell CW, Lindsey KL, McGaw LJ, Sparg SG, Stafford GI, Elgorashi EE, et al. Assessing African medicinal plants for efficacy and safety: pharmacological screening and toxicology. J Ethnopharmacol. 2004;94(2-3):205-17. https://doi.org/10.1016/j.jep.2004.05.012
  14. Ernst E. Risks of herbal medicinal products. Pharmacoepidemiol Drug Saf. 2004;13(11):767-71. https://doi.org/10.1002/pds.1014
  15. Ullah W, Uddin G, Siddiqui BS. Ethnic uses, pharmacological and phytochemical profile of genus Grewia. J Asian Nat Prod Res. 2012;14(2):186-95. https://doi.org/10.1080/10286020.2011.639764
  16. Leistner OA. Seed plants of Southern Africa: families and genera. Pretoria: National Botanical Institute; 2000. 775 p.
  17. Curtis B, Mannheimer C. Tree atlas of Namibia. Windhoek: National Botanical Research Institute; 2005. p. 432-33.
  18. Kirtikar KR, Basu BD, Blatter E. Indian medicinal plants. 2nd ed. Dehradun: International Books Distributors; 1987. p. 1730-32.
  19. Asghar MN, Khan IU, Sherin L, Ashfaq M. Evaulation of antioxidant activity of Grewia asiatica berry using 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) and N,N-dimethyl-pphenylenediamine radical cations decolourization assays. Asian J Chem. 2008;20(7):5123-32.
  20. Ramshankar YV, Vinay P, Vijayan P. Antioxidant, antimicrobial and cytotoxicity properties of the methanolic extract from Grewia tiliaefolia Vahl. Pharmacogn Mag. 2008;4(16):329-34.
  21. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 1965;16(3):144-58.
  22. Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT- Food Sci Technol. 1995;28(1):25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  23. Gulcin I, Elias R, Gepdiremen A, Boyer L. Antioxidant activity of lignans from fringe tree (Chionanthus virginicus L.). Eur Food Res Technol. 2006;223(6):759-67. https://doi.org/10.1007/s00217-006-0265-5
  24. Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal. 2013;18(14):1818-92. https://doi.org/10.1089/ars.2012.4581
  25. Karadag A, Ozcelik B, Saner S. Review of methods to determine antioxidant capacities. Food Anal Methods. 2009;2(1):41-60. https://doi.org/10.1007/s12161-008-9067-7
  26. Goswami S, Jain R, Masih H. Antifungal, antioxidant and DNA protection potential of Grewia asiatica L. leaves acetone extract. J Pharmacogn Phytochem. 2018;7 Suppl 1:212-7.
  27. Lamola SM, Dzoyem JP, Botha F, van Wyk C. Anti-bacterial, free radical scavenging activity and cytotoxicity of acetone extracts of Grewia flava. Afr Health Sci. 2017;17(3):790-6. https://doi.org/10.4314/ahs.v17i3.22
  28. Noreen H, Semmar N, Farman M, McCullagh JSO. Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus. Asian Pac J Trop Med. 2017;10(8):792-801. https://doi.org/10.1016/j.apjtm.2017.07.024
  29. Yokozawa T, Cho EJ, Hara Y, Kitani K. Antioxidative activity of green tea treated with radical initiator 2, 2'-azobis(2-amidinopropane) dihydrochloride. J Agric Food Chem. 2000;48(10):5068-73. https://doi.org/10.1021/jf000253b
  30. Elisia I, Kitts DD. Anthocyanins inhibit peroxyl radical-induced apoptosis in Caco-2 cells. Mol Cell Biochem. 2008;312(1-2):139-45. https://doi.org/10.1007/s11010-008-9729-1
  31. Kulkarni AP, Pal JK, Devasagayam TPA. Radiation and free radical exposure and regulation of protein synthesis by the heme-regulated eukaryotic initiation factor 2α kinase [Internet]. Mumbai: Bhabha Atomic Research Centre (BARC); 2008 [cited 2019 Aug 7]. Available from: http://barc.gov.in/publications/nl/2008/20081010.pdf.