DOI QR코드

DOI QR Code

Evaluation of the Optimal Grouser Shape Ratio of Dozer Considering the Ground Conditions

지반 특성을 고려한 도저의 최적 그라우저 형상비 평가

  • 백성하 (한국건설기술연구원 미래융합연구본부) ;
  • 곽태영 (한국건설기술연구원 인프라안전연구본부) ;
  • 최창호 (한국건설기술연구원 미래융합연구본부) ;
  • 이승환 (한국건설기술연구원 국가건설기준센터)
  • Received : 2021.03.11
  • Accepted : 2021.03.25
  • Published : 2021.03.31

Abstract

A dozer is a construction machinery used to move soil mass along large open tracts of land. Soil thrust generated on the soil-track interface determines the performance of the dozer; to improve the tractive performance of the dozer, the outer surface of the continuous-track is designed to protrude with grousers. In this study, we calculated soil thrust of the dozer equipped with grousers with various shape ratios, and evaluated the optimal grouser shape ratio considering ground conditions. Grouser generated additional soil thrust on the side of the continuous-track (e.g., side soil thrust) and converted the shearing surface (e.g., from soil-track interface to soil-soil interface), increasing the soil thrust of dozer by about 1.3 to 1.6 times. The effect of grouser's shape ratio on the soil thrust of dozer differed with the relative density of the ground. As the shape ratios of grouser increased, soil thrust of dozer decreased at the relative density of 40% and increased at the relative density of 80%. Based on these results, it can be concluded that the shape ratio of grouser severely affects the dozer's performance; thus, careful consideration of the optimal shape ratio of grouser is of great importance in the mechanical design, evaluation, and optimization of the undercarriage of dozers.

도저는 토공사 현장에서 부지를 평탄화하거나 토사를 모으기 위해 사용되는 장비이다. 도저의 성능은 지반-궤도 접지면에서 발현되는 지반추력에 의해 결정되는데, 주어진 조건에서 최대한의 지반추력을 발현시키기 위해서 무한궤도 표면에 그라우저를 부착하는 것이 일반적이다. 본 연구에서는 다양한 형상비를 가지는 그라우저가 부착된 도저의 지반추력을 산정하고, 이를 바탕으로 지반 특성을 고려한 최적 그라우저 형상비를 평가했다. 그라우저는 궤도 측면에서 추가적인 지반추력(측면지반추력)을 발현시키고 지반-궤도 사이의 전단을 지반-지반 사이의 전단으로 전환시켜, 도저의 지반추력을 약 1.3~1.6배 증가시켰다. 그라우저 형상비가 지반추력에 미치는 영향은 도저가 구동하는 지반의 다짐도에 따라 다르게 나타났다. 느슨한 지반에서는 형상비가 작은 그라우저가, 조밀한 지반에서는 형상비가 큰 그라우저가 도저의 지반추력을 가장 크게 증가시킬 수 있는 최적의 형상으로 평가되었다. 무한궤도에 지반의 다짐도를 고려한 최적 그라우저를 부착한다면 도저의 작업 성능을 보다 크게 강화할 수 있을 것이며, 이를 통해 장비의 효율적 활용 및 토공사 생산성 향상이 가능할 것으로 기대된다.

Keywords

References

  1. Road Pavement Substructure Construction Guidelines (2017), Ministry of Land, Infrastructure and Transport (in Korea).
  2. Baek, S.H. (2018), "Assessment of the Soil Thrust for Off-road Tracked Vehicles based on Soil-track Interaction Theory", PhD thesis, Department of Civil and Environmental Engineering, Seoul National University.
  3. Baek, S.H. and Chung, C.K. (2018), "Fundamental Study on the Effect of Grousers on the Soil Thrust of Off-road Tracked Vehicles", J. of the Korean Geotechnical Society, Vol.34, No.9, pp.33-42 (in Korean). https://doi.org/10.7843/kgs.2018.34.9.33
  4. Baek, S.H., Shin, G.B., and Chung, C.K. (2018), "Assessment of the Side Thrust for Off-road Tracked Vehicles based on the Punching Shear Theory", J. of Terramechanics. Vol.79, pp.59-68. https://doi.org/10.1016/j.jterra.2018.07.002
  5. Bekker, M.G. (1956), Theory of Land Locomotion, University of Michigan Press.
  6. Das, B.M. (1983), Principles of Foundation Engineering, PWS-KENT Publishing Company, Boston, MA.
  7. Grecenko, A. (2007a), "Re-examined Principles of Thrust Generation by a Track on Soft Ground", J. of Terramechanics, Vol.44, No.1, pp.123-131. https://doi.org/10.1016/j.jterra.2006.04.002
  8. Grecenko, A. (2007b), "Thrust and Slip of a Track Determined by the Compression-sliding Approach", J. of Terramechanics, Vol.44, No.6, pp.451-459. https://doi.org/10.1016/j.jterra.2008.03.004
  9. Lee, S.G. (1993), "Weathering of Granite", J. of the Geological Society of Korea, Vol.29, No.4, pp.396-413.
  10. Lee, S.H., Baek, S.H., Song, Y.H., and Chung, C.K. (2019), Case Study of Correlation between the SPT-N Value and PMT Results Performed on Weathered Granite Zone in Korea, J. of the Korean Geotechnical Society, Vol.35, No.12, pp.15-24 (in Korean).
  11. Baek, S.H., Kim, J.Y., Lee, S.H., and Chung, C.K. (2018), "Development of the Cy clic p-y Curve for a Single Pile in Sandy Soil", Marine Georesources & Geotechnology, Vol.36, No.3, pp.351-359. https://doi.org/10.1080/1064119X.2017.1318986
  12. Barton, Y.O. (1979), Lateral Loading of Model Piles in the Centrifuge, M.Phil. Thesis, University of Cambridge.
  13. Park, Y.H. (1996), "Interaction of Soils-tracked Vehicle", PhD thesis, Department of Civil and Environmental Engineering, Seoul National University.
  14. Patel, N., Scott, G., and Ellery, A. (2004), "Application of Bekker Theory for Planetary Exploration through Wheeled, Tracked and Legged Vehicle Locomotion", Proceedings of Space 2004 Conference and Exhibit, San Diego, California, U.S.A.
  15. Potyondy, J.G. (1961), "Skin Friction between Various Soils and Construction Materials", Geotechnique, Vol.11, No.4, pp.339-353. https://doi.org/10.1680/geot.1961.11.4.339
  16. Shin, G.B., Baek, S.H., and Chung, C.K. (2018), "Evaluation of the Soil Thrust Interference Effect in Track Systems from Model Track Tests", Proceedings of the 36th International Conference on Ocean, Offshore, and Arctic Engineering, Japan.
  17. Shin, G.B., Baek, S.H., Park, K.H., and Chung, C.K. (2020), "Investigation of the Soil Thrust Interference Effect for Tracked Unmanned Ground Vehicles (UGVs) Using Model Track Tests", J. of Terramechanics, Vol.91, pp.117-127. https://doi.org/10.1016/j.jterra.2020.06.005
  18. Wong, J.Y. (1989), Terramechanics and Off-Road Vehicle Engineering, Elsevier.
  19. Wong, J.Y. and Huang, W. (2006), "Wheels vs. Tracks - A Fundamental Evaluation from the Traction Perspective", J. of Terramechanics, Vol.43, No.1, pp.27-42. https://doi.org/10.1016/j.jterra.2004.08.003
  20. Yong, R., Fattah, E., and Skiadas, N. (1984), Vehicle Traction Mechanics, Elsevier.