DOI QR코드

DOI QR Code

INVERTIBILITY OF GENERALIZED BESSEL MULTIPLIERS IN HILBERT C-MODULES

  • Received : 2020.04.19
  • Accepted : 2020.12.23
  • Published : 2021.03.31

Abstract

This paper includes a general version of Bessel multipliers in Hilbert C∗-modules. In fact, by combining analysis, an operator on the standard Hilbert C∗-module and synthesis, we reach so-called generalized Bessel multipliers. Because of their importance for applications, we are interested to determine cases when generalized multipliers are invertible. We investigate some necessary or sufficient conditions for the invertibility of such operators and also we look at which perturbation of parameters preserve the invertibility of them. Subsequently, our attention is on how to express the inverse of an invertible generalized frame multiplier as a multiplier. In fact, we show that for all frames, the inverse of any invertible frame multiplier with an invertible symbol can always be represented as a multiplier with an invertible symbol and appropriate dual frames of the given ones.

Keywords

References

  1. G. Abbaspour Tabadkan, H. Hosseinnezhad, and A. Rahimi, Generalized Bessel multipliers in Hilbert spaces, Results Math. 73 (2018), no. 2, Paper No. 85, 18 pp. https://doi.org/10.1007/s00025-018-0841-6
  2. A. Alijani and M. A. Dehghan, G-frames and their duals for Hilbert C*-modules, Bull. Iranian Math. Soc. 38 (2012), no. 3, 567-580.
  3. L. Arambasic, On frames for countably generated Hilbert C*-modules, Proc. Amer. Math. Soc. 135 (2007), no. 2, 469-478. https://doi.org/10.1090/S0002-9939-06-08498-X
  4. B. Aupetit, A primer on spectral theory, Universitext, Springer-Verlag, New York, 1991. https://doi.org/10.1007/978-1-4612-3048-9
  5. P. Balazs, Basic definition and properties of Bessel multipliers, J. Math. Anal. Appl. 325 (2007), no. 1, 571-585. https://doi.org/10.1016/j.jmaa.2006.02.012
  6. P. Balazs, Matrix representation of operators using frames, Sampl. Theory Signal Image Process. 7 (2008), no. 1, 39-54. https://doi.org/10.1007/BF03549484
  7. P. Balazs, Hilbert-Schmidt operators and frames-classification, best approximation by multipliers and algorithms, Int. J. Wavelets Multiresolut. Inf. Process. 6 (2008), no. 2, 315-330. https://doi.org/10.1142/S0219691308002379
  8. P. Balazs, Matrix representation of bounded linear operators by Bessel sequences, frames and Riesz sequence, SAMPTA'09, Marseille, (2009), 18-22.
  9. P. Balazs, B. Laback, G. Eckel, and W. A. Deutsch, Time-frequency sparsity by removing perceptually irrelevant components using a simple model of simultaneous masking, IEEE Trans. Audio speech. Lang. Process. 18 (2009), no. 1, 34-49. https://doi.org/10.1109/TASL.2009.2023164
  10. P. Balazs and D. T. Stoeva, Representation of the inverse of a frame multiplier, J. Math. Anal. Appl. 422 (2015), no. 2, 981-994. https://doi.org/10.1016/j.jmaa.2014.09.020
  11. P. G. Casazza, G. Kutyniok, and S. Li, Fusion frames and distributed processing, Appl. Comput. Harmon. Anal. 25 (2008), no. 1, 114-132. https://doi.org/10.1016/j.acha.2007.10.001
  12. J. B. Conway, A Course in Functional Analysis, second edition, Graduate Texts in Mathematics, 96, Springer-Verlag, New York, 1990.
  13. R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366. https://doi.org/10.2307/1990760
  14. M. Frank and D. R. Larson, Frames in Hilbert C*-modules and C*-algebras, J. Operator Theory 48 (2002), no. 2, 273-314.
  15. K. Grochenig, Time-frequency analysis of Sjostrand's class, Rev. Mat. Iberoam. 22 (2006), no. 2, 703-724. https://doi.org/10.4171/RMI/471
  16. D. Han, W. Jing, and R. N. Mohapatra, Perturbation of frames and Riesz bases in Hilbert C*-modules, Linear Algebra Appl. 431 (2009), no. 5-7, 746-759. https://doi.org/10.1016/j.laa.2009.03.025
  17. W. Jing, Frames in Hilbert C*-modules, ProQuest LLC, Ann Arbor, MI, 2006.
  18. A. Khosravi and B. Khosravi, g-frames and modular Riesz bases in Hilbert C*-modules, Int. J. Wavelets Multiresolut. Inf. Process. 10 (2012), no. 2, 1250013, 12 pp. https://doi.org/10.1142/S0219691312500130
  19. A. Khosravi and M. Mirzaee Azandaryani, Bessel multipliers in Hilbert C*-modules, Banach J. Math. Anal. 9 (2015), no. 3, 153-163. https://doi.org/10.15352/bjma/09-3-11
  20. E. C. Lance, Hilbert C*-modules, London Mathematical Society Lecture Note Series, 210, Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9780511526206
  21. S. Li and H. Ogawa, Pseudoframes for subspaces with applications, J. Fourier Anal. Appl. 10 (2004), no. 4, 409-431. https://doi.org/10.1007/s00041-004-3039-0
  22. P. Majdak, P. Balazs, W. Kreuzer, and M. Dorfler, A time-frequency method for increasing the signal-to-noise ratio in system identification with exponential sweeps, Proceedings of the 36th International Conference on Acoustics, Speech and Signal Processing, ICASSP 2011, Prag.
  23. V. M. Manuilov and E. V. Troitsky, Hilbert C*-modules, translated from the 2001 Russian original by the authors, Translations of Mathematical Monographs, 226, American Mathematical Society, Providence, RI, 2005. https://doi.org/10.1090/mmono/226
  24. D. T. Stoeva and P. Balazs, Invertibility of multipliers, Appl. Comput. Harmon. Anal. 33 (2012), no. 2, 292-299. https://doi.org/10.1016/j.acha.2011.11.001
  25. T. Strohmer, Pseudodifferential operators and Banach algebras in mobile communications, Appl. Comput. Harmon. Anal. 20 (2006), no. 2, 237-249. https://doi.org/10.1016/j.acha.2005.06.003
  26. W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006), no. 1, 437-452. https://doi.org/10.1016/j.jmaa.2005.09.039
  27. D. Wang and G. J. Brown, Computational auditory scene analysis: Principles, algorithms, and applications, Wiley-IEEE press, 2006.