DOI QR코드

DOI QR Code

Calculation and Comparison of Maximum Lyapunov Exponent in Different Direction: An Approach to human Gait Stability

  • Dinesh, Paudel (Department of Physical Education, Kangwon National University)
  • Received : 2021.01.31
  • Accepted : 2021.03.14
  • Published : 2021.03.31

Abstract

Objective: The goal of this study is to calculate and compare the Maximum Lyapunov Exponent (MLE) for the anteroposterior, mediolateral and vertical displacement of the markers attached to bony land marks of the trunk and foot. Method: Ten young and healthy male subjects (age: 26.5±3.27 years, height: 167.44±5.12 cm, and weight 69.5±7.36) participated in the study. Three-dimensional positional coordinate of eight different trunk and foot marker during walking on tread mill were analysed. Results: MLE values for anteroposterior displacement of the marker were found to be significantly different with MLE values for mediolateral and vertical displacement whereas MLE values for mediolateral displacement of the marker shows no significant difference with the MLE values for vertical displacement of the markers at significance level 0.05. Conclusion: Finding of this study suggest that it is essential to consider the displacement in all three direction to examine the real characteristic of a gait signal.

Keywords

References

  1. Alton, F., Baldey, L., Caplan, S. & Morrissey, M. (1998). A kinematic comparison of overground and treadmill walking. Clinical Biomechanics, 13(6), 434-440. https://doi.org/10.1016/S0268-0033(98)00012-6
  2. Baker, G. L., Baker, G. L. & Gollub, J. P. (1996). Chaotic dynamics: an introduction: Cambridge university press.
  3. Bizovska, L., Svoboda, Z., Janura, M., Bisi, M. C. & Vuillerme, N. (2018). Local dynamic stability during gait for predicting falls in elderly people: A one-year prospective study. PloS One, 13(5), e0197091. https://doi.org/10.1371/journal.pone.0197091
  4. Broomhead, D. S. & King, G. P. (1986). Extracting qualitative dynamics from experimental data. Physica D: Nonlinear Phenomena, 20(2-3), 217-236. https://doi.org/10.1016/0167-2789(86)90031-X
  5. Buzzi, U. H., Stergiou, N., Kurz, M. J., Hageman, P. A. & Heidel, J. (2003). Nonlinear dynamics indicates aging affects variability during gait. Clinical Biomechanics, 18(5), 435-443. https://doi.org/10.1016/S0268-0033(03)00029-9
  6. Chakraborty, S. & Nandy, A. (2018). Comparison of Local Dynamic Stability of Treadmill Gait Data in Three Different Planes Through Maximal Lyapunov Exponent. Paper presented at the 2018 International Conference on Computing, Power and Communication Technologies (GUCON).
  7. CONTINI, R., Gage, H. & DRILLIS, R. (1965). Human gait characteristics. In Biomechanics and Related Bio-Engineering Topics (pp. 413-431), Elsevier.
  8. Dananberg, H. J. (2000). Sagittal plane biomechanics. American Diabetes Association. Journal of the American Podiatric Medical Association, 90(1), 47-50. https://doi.org/10.7547/87507315-90-1-47
  9. de Morais Filho, M. C., Kawamura, C. M., Andrade, P. H., Dos Santos, M. B., Pickel, M. R. & Neto, R. B. (2009). Factors associated with pelvic asymmetry in transverse plane during gait in patients with cerebral palsy. Journal of Pediatric Orthopaedics B, 18(6), 320-324. https://doi.org/10.1097/BPB.0b013e32832e9599
  10. Dingwell, J. B., Cusumano, J. P., Sternad, D. & Cavanagh, P. R. (2000). Slower speeds in patients with diabetic neuropathy lead to improved local dynamic stability of continuous overground walking. Journal of Biomechanics, 33(10), 1269-1277. https://doi.org/10.1016/S0021-9290(00)00092-0
  11. Dingwell, J. B. & Marin, L. C. (2006). Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. Journal of Biomechanics, 39(3), 444-452. https://doi.org/10.1016/j.jbiomech.2004.12.014
  12. Ekizos, A., Santuz, A., Schroll, A. & Arampatzis, A. (2018). The maximum Lyapunov exponent during walking and running: reliability assessment of different marker-sets. Frontiers in Physiology, 9, 1101. https://doi.org/10.3389/fphys.2018.01101
  13. Fraser, A. M. & Swinney, H. L. (1986). Independent coordinates for strange attractors from mutual information. Physical Review A, 33(2), 1134. https://doi.org/10.1103/PhysRevA.33.1134
  14. Goswami, A., Thuilot, B. & Espiau, B. (1998). A study of the passive gait of a compass-like biped robot: Symmetry and chaos. The International Journal of Robotics Research, 17(12), 1282-1301. https://doi.org/10.1177/027836499801701202
  15. Howcroft, J., Kofman, J., Lemaire, E. D. & McIlroy, W. E. (2016). Analysis of dual-task elderly gait in fallers and non-fallers using wearable sensors. Journal of Biomechanics, 49(7), 992-1001. https://doi.org/10.1016/j.jbiomech.2016.01.015
  16. Huijben, B., Van Schooten, K., Van Dieen, J. & Pijnappels, M. (2018). The effect of walking speed on quality of gait in older adults. Gait & Posture, 65, 112-116.
  17. Kang, H. G. & Dingwell, J. B. (2008). Effects of walking speed, strength and range of motion on gait stability in healthy older adults. Journal of Biomechanics, 41(14), 2899-2905. https://doi.org/10.1016/j.jbiomech.2008.08.002
  18. Kantz, H. (1994). A robust method to estimate the maximal Lyapunov exponent of a time series. Physics Letters A, 185(1), 77-87. https://doi.org/10.1016/0375-9601(94)90991-1
  19. Kantz, H. & Schreiber, T. (2004). Nonlinear time series analysis (Vol. 7): Cambridge university press.
  20. Kennel, M. B., Brown, R. & Abarbanel, H. D. (1992). Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A, 45(6), 3403. https://doi.org/10.1103/PhysRevA.45.3403
  21. Leteneur, S., Gillet, C., Sadeghi, H., Allard, P. & Barbier, F. (2009). Effect of trunk inclination on lower limb joint and lumbar moments in able men during the stance phase of gait. Clinical Biomechanics, 24(2), 190-195. https://doi.org/10.1016/j.clinbiomech.2008.10.005
  22. Lockhart, T. E. & Liu, J. (2008). Differentiating fall-prone and healthy adults using local dynamic stability. Ergonomics, 51(12), 1860-1872. https://doi.org/10.1080/00140130802567079
  23. Mehdizadeh, S. (2018). The largest Lyapunov exponent of gait in young and elderly individuals: A systematic review. Gait & Posture, 60, 241-250. https://doi.org/10.1016/j.gaitpost.2017.12.016
  24. Mehdizadeh, S. & Sanjari, M. A. (2017). Effect of noise and filtering on largest Lyapunov exponent of time series associated with human walking. Journal of Biomechanics, 64, 236-239. https://doi.org/10.1016/j.jbiomech.2017.09.009
  25. Mohler, B. J., Thompson, W. B., Creem-Regehr, S. H., Pick, H. L. & Warren, W. H. (2007). Visual flow influences gait transition speed and preferred walking speed. Experimental Brain Research, 181(2), 221-228. https://doi.org/10.1007/s00221-007-0917-0
  26. Nalley, T. K. & Grider-Potter, N. (2019). Vertebral morphology in relation to head posture and locomotion I: The cervical spine. Spinal Evolution, 35-50.
  27. Park, S. H. & Kim, J. T. (2004). Comparision and analysis about gait parameters based on personality types through MBTI Test. Korean Journal of Sport Biomechanics, 14(3), 37-47. https://doi.org/10.5103/KJSB.2004.14.3.037
  28. Raffalt, P. C., Senderling, B. & Stergiou, N. (2020). Filtering affects the calculation of the largest Lyapunov exponent. Computers in Biology and Medicine, 122, 103786. https://doi.org/10.1016/j.compbiomed.2020.103786
  29. Rethlefsen, S. A. & Kay, R. M. (2013). Transverse plane gait problems in children with cerebral palsy. Journal of Pediatric Orthopaedics, 33(4), 422-430. https://doi.org/10.1097/bpo.0b013e3182784e16
  30. Riley, P. O., Paolini, G., Della Croce, U., Paylo, K. W. & Kerrigan, D. C. (2007). A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects. Gait & Posture, 26(1), 17-24. https://doi.org/10.1016/j.gaitpost.2006.07.003
  31. Roberts, A. (2010). Gait analysis: normal and pathological function J. Perry and JM Burnfield Pp. 576. Thorofare: SLACK Incorporated, 2010. ISBN: 978-1-55642-766-4. $92.95. In: The British Editorial Society of Bone and Joint Surgery.
  32. Rosenstein, M. T., Collins, J. J. & De Luca, C. J. (1993). A practical method for calculating largest Lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena, 65(1-2), 117-134. https://doi.org/10.1016/0167-2789(93)90009-P
  33. Ryu, J. S. (2019). Effects of Muscle Activation Pattern and Stability of the Lower Extremity's Joint on Falls in the Elderly Walking-Half a Year Prospective Study. Korean Journal of Sport Biomechanics, 29(2), 79-88. https://doi.org/10.5103/KJSB.2019.29.2.79
  34. Smith, V. A. (2019). Standardizing the Calculation of the Lyapunov Exponent for Human Gait using Inertial Measurement Units. Arizona State University.
  35. Takens, F. (1981). Detecting strange attractors in turbulence. In Dynamical systems and turbulence, Warwick 1980 (pp. 366-381): Springer.
  36. Terrier, P. & Reynard, F. (2015). Effect of age on the variability and stability of gait: a cross-sectional treadmill study in healthy individuals between 20 and 69 years of age. Gait & Posture, 41(1), 170-174. https://doi.org/10.1016/j.gaitpost.2014.09.024
  37. Thompson, J. & Stewart, H. (1986). Nonlinear Dynamics and Chaos John Wiley & Sons. New York.
  38. van Schooten, K. S., Pijnappels, M., Rispens, S. M., Elders, P. J., Lips, P. & van Dieen, J. H. (2015). Ambulatory fall-risk assessment: amount and quality of daily-life gait predict falls in older adults. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 70(5), 608-615. https://doi.org/10.1093/gerona/glu225
  39. Vaughan, C. L., Davis, B. L. & O'connor, J. C. (1992). Dynamics of human gait: Human Kinetics Publishers.
  40. Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A. (1985). Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 16(3), 285-317. https://doi.org/10.1016/0167-2789(85)90011-9