DOI QR코드

DOI QR Code

Virulence Structure of Blumeria graminis f. sp. avenae Populations in Poland across 2014-2015

  • Cieplak, Magdalena (Institute of Plant Genetics, Breeding and Biotechnology, University of Life Science) ;
  • Terlecka, Katarzyna (Institute of Plant Genetics, Breeding and Biotechnology, University of Life Science) ;
  • Ociepa, Tomasz (Institute of Plant Genetics, Breeding and Biotechnology, University of Life Science) ;
  • Zimowska, Beata (Department of Plant Protection, University of Life Sciences) ;
  • Okon, Sylwia (Institute of Plant Genetics, Breeding and Biotechnology, University of Life Science)
  • Received : 2020.10.15
  • Accepted : 2021.01.25
  • Published : 2021.04.01

Abstract

The purpose of this study was to determine the virulence structure of oat powdery mildew (Blumeria graminis f. sp. avenae, Bga) populations in Poland collected in 2014 and 2015. Powdery mildew isolates were collected from 18 locations in Poland. In total, nine lines and cultivars of oat, with different mildew resistance genes, were used to assess virulence of 180 isolates. The results showed that a significant proportion of the Bga isolates found in Poland were virulent to differentials with Pm1, Pm3, Pm6, and Pm3 + Pm8 genes. In contrast Pm4, Pm5, Pm2, and Pm7 genes were classified as resistant to all pathogen isolates used in the experiment. Based on obtained results we can state that there are differences in virulence pattern and diversity parameters between sites and years, but clear trends are not deducible.

Keywords

References

  1. Abdelrhim, A., Abd-Alla, H. M., Abdou, E.-S., Ismail, M. E. and Cowger, C. 2018. Virulence of Egyptian Blumeria graminis f. sp. tritici population and response of Egyptian wheat cultivars. Plant Dis. 102:391-397. https://doi.org/10.1094/PDIS-07-17-0975-RE
  2. Aung, T., Thomas, H. and Jones, I. T. 1977. The transfer of the gene for mildew resistance from Avena barbata (4x) into the cultivated oat A. sativa by an induced translocation. Euphytica 26:623-632. https://doi.org/10.1007/BF00021687
  3. Braun, U., Cook, R. T. A., Inman, A. J. and Shin, H.-D. 2002. The taxonomy of the powdery mildew fungi. In: The powdery mildews: a comprehensive treatise, eds. by R. R. Belanger, W. R. Bushnell, A. J. Dik and T. L. W. Carver, pp. 13-55. American Phytopathological Society Press, St. Paul, MN, USA.
  4. Carver, T. L. W. and Griffiths, E. 1981. Relationship between powdery mildew infection, green leaf area and grain yield of barley. Ann. Appl. Biol. 99:255-266. https://doi.org/10.1111/j.1744-7348.1981.tb04794.x
  5. Czembor, H. J. and Czembor, J. H. 2005. Pathogenicity of barley powdery mildew (Blumeria graminis f. sp. hordei) in Poland in 2001. Biul. Inst. Hod. i Aklim. Roslin 236:183-192 (in Polish).
  6. Dreiseitl, A. and Kosman, E. 2013. Virulence phenotypes of Blumeria graminis f. sp. hordei in South Africa. Eur. J. Plant Pathol. 136:113-121. https://doi.org/10.1007/s10658-012-0143-x
  7. Elad, Y. and Pertot, I. 2014. Climate change impacts on plant pathogens and plant diseases. J. Crop Improv. 28:99-139. https://doi.org/10.1080/15427528.2014.865412
  8. Food and Agriculture Organization of the United Nations. 2020. FAOSTAT. URL http://www.fao.org/faostat/en/#data [15 January 2021].
  9. Flor, H. H. 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9:275-296. https://doi.org/10.1146/annurev.py.09.090171.001423
  10. Gacek, E. 2000. The use of plant genetic diversity in the control of crop diseases. Post. Nauk Roln. 47:17-25 (in Polish).
  11. Gilmour, J. 1973. Octal notation for designating physiologic races of plant pathogens. Nature 242:620. https://doi.org/10.1038/242620a0
  12. Gupta, S., Sharma, D. and Gupta, M. 2018. Climate change impact on plant diseases: opinion, trends and mitigation strategies. In: Microbes for climate resilient agriculture, eds. by P. L. Kashyap, A. K. Srivastava, S. P. Tiwari and S. Kumar, pp. 41-56. Wiley, Hoboken, NJ, USA.
  13. Hayes, J. D. and Catling, W. S. 1963. Physiological specialization in Erysiphe graminis DC. in oats. Nature 199:1111-1112. https://doi.org/10.1038/1991111a0
  14. Hayes, J. D. and Jones, I. T. 1966. Variation in the pathogenicity of Erysiphe graminis D.C. F. Sp. Avenae, and its relation to the development of mildew-resistant oat cultivars. Euphytica 15:80-86. https://doi.org/10.1007/BF00024081
  15. Heath, M. C. 2000. Nonhost resistance and nonspecific plant defenses. Curr. Opin. Plant Biol. 3:315-319. https://doi.org/10.1016/S1369-5266(00)00087-X
  16. Herrmann, M. H. and Mohler, V. 2018. Locating two novel genes for resistance to powdery mildew from Avena byzantina in the oat genome. Plant Breed. 137:832-838. https://doi.org/10.1111/pbr.12655
  17. Hsam, S. L. K., Mohler, V. and Zeller, F. J. 2014. The genetics of resistance to powdery mildew in cultivated oats (Avena sativa L.): current status of major genes. J. Appl. Genet. 55:155-162. https://doi.org/10.1007/s13353-014-0196-y
  18. Hsam, S. L. K., Paderina, E. V., Gordei, S. and Zeller, F. J. 1998. Genetic studies of powdery mildew resistance in cultivated oat (Avena sativa L.). II. Cultivars and breeding lines grown in Northern and Eastern Europe. Hereditas 129:227-230. https://doi.org/10.1111/j.1601-5223.1998.00227.x
  19. Hsam, S. L. K., Peters, N., Paderina, E. V., Felsenstein, F., Oppitz, K. and Zeller, F. J. 1997. Genetic studies of powdery mildew resistance in common oat (Avena sativa L.). I. Cultivars and breeding lines grown in Western Europe and North America. Euphytica 96:421-427. https://doi.org/10.1023/A:1003057505151
  20. Jones, E. T. and Griffiths, D. J. 1952. Varietal resistance and susceptibility of oats to powdery mildew (Erysiphe graminis). Trans. Br. Mycol. Soc. 35:71-80. https://doi.org/10.1016/s0007-1536(52)80008-7
  21. Jones, I. T. 1977. The effect on grain yield of adult plant resistance to mildew in oats. Ann. Appl. Biol. 86:267-277. https://doi.org/10.1111/j.1744-7348.1977.tb01840.x
  22. Kokina, I., Statkeviciute, G., Leistrumaite, A. and Rashal, I. 2014. The peculiarities of genetic structure of the Blumeria graminis f. sp. hordei population in Lithuania. Zemdirbyste 101:419-424. https://doi.org/10.13080/z-a.2014.101.053
  23. Kominkova, E., Dreiseitl, A., Maleckova, E., Dolezel, J. and Valarik, M. 2016. Genetic diversity of Blumeria graminis f. sp. hordei in central Europe and its comparison with Australian population. PLoS ONE 11:e0167099. https://doi.org/10.1371/journal.pone.0167099
  24. Kosman, E. 1996. Difference and diversity of plant pathogen populations: a new approach for measuring. Phytopathology 86:1152-1155.
  25. Kosman, E. and Leonard, K. J. 2007. Conceptual analysis of methods applied to assessment of diversity within and distance between populations with asexual or mixed mode of reproduction. New Phytol. 174:683-696. https://doi.org/10.1111/j.1469-8137.2007.02031.x
  26. Kowalczyk, K., Hsam, S. L. K. and Zeller, F. J. 2004. Identification of oat powdery mildew resistance group 2 (OMR2) and Polish common oat (Avena sativa L.) cultivars. In: Proceedings of Resistance of Cereals to Biotic Stresses, pp. 122-125. Plant Breeding and Acclimatization Institute, Radzikow, Poland.
  27. Lawes, D. A. and Hayes, J. D. 1965. The effect of mildew (Erysiphe graminis f. sp. avenae) on spring oats. Plant Pathol. 14:125-128. https://doi.org/10.1111/j.1365-3059.1965.tb00295.x
  28. Liu, N., Liu, Z. L., Gong, G., Zhang, M., Wang, X., Zhou, Y., Qi, X., Chen, H., Yang, J., Luo, P. and Yang, C. 2015. Virulence structure of Blumeria graminis f. sp. tritici and its genetic diversity by ISSR and SRAP profiling analyses. PLoS ONE 10:e0130881. https://doi.org/10.1371/journal.pone.0130881
  29. Mains, E. B. 1934. Inheritance of resistance to powdery mildew, Erysiphe graminis tritici, in wheat. Phytopathology 24:1257-1261.
  30. Ociepa, T., Okon, S., Nucia, A., Lesniowska-Nowak, J., Paczos--Grzeda, E. and Bisaga, M. 2020. Molecular identification and chromosomal localization of new powdery mildew resistance gene Pm11 in oat. Theor. Appl. Genet. 133:179-185. https://doi.org/10.1007/s00122-019-03449-3
  31. Okon, S. 2012. Identification of powdery mildew resistance genes in Polish common oat (Avena sativa L.) cultivars using host-pathogen tests. Acta Agrobot. 65:63-68. https://doi.org/10.5586/aa.2012.008
  32. Okon, S. M. 2015. Effectiveness of resistance genes to powdery mildew in oat. Crop Prot. 74:48-50. https://doi.org/10.1016/j.cropro.2015.04.004
  33. Okon, S. M. and Ociepa, T. 2017. Virulence structure of the Blumeria graminis DC.f. sp. avenae populations occurring in Poland across 2010-2013. Eur. J. Plant Pathol. 149:711-718. https://doi.org/10.1007/s10658-017-1220-y
  34. Okon, S., Ociepa, T., Paczos-Grzeda, E. and Kowalczyk, K. 2016. Analysis of the level of resistance of Polish oat cultivars (Avena sativa L.) to powdery mildew (Blumeria graminis DC. f. sp. avenae Em. Marchal.). Ann. Univ. Mariae Curie-Sklodowska, E Agric. 71:51-60 (in Polish).
  35. Peakall, R. and Smouse, P. E. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research: an update. Bioinformatics 28:2537-2539. https://doi.org/10.1093/bioinformatics/bts460
  36. Porras-Hurtado, L., Ruiz, Y., Santos, C., Phillips, C., Carracedo, A. and Lareu, M. V. 2013. An overview of STRUCTURE: applications, parameter settings, and supporting software. Front. Genet. 4:98.
  37. Rasane, P., Jha, A., Sabikhi, L., Kumar, A. and Unnikrishnan, V. S. 2015. Nutritional advantages of oats and opportunities for its processing as value added foods: a review. J. Food Sci. Technol. 52:662-675. https://doi.org/10.1007/s13197-013-1072-1
  38. Roderick, H. W. and Clifford, B. C. 1995. Variation in adult plant resistance to powdery mildew in spring oats under field and laboratory conditions. Plant Pathol. 44:366-373. https://doi.org/10.1111/j.1365-3059.1995.tb02789.x
  39. Roderick, H. W., Jones, E. R. L. and Sebesta, J. 2000. Resistance to oat powdery mildew in Britain and Europe: a review. Ann. Appl. Biol. 136:85-91. https://doi.org/10.1111/j.1744-7348.2000.tb00012.x
  40. Roderick, H. W. and Jones, I. T. 1988. The effect of powdery mildew (Erysiphe graminis f. sp. avenae) on yield, yield components and grain quality of spring oats. Ann. Appl. Biol. 113:455-460. https://doi.org/10.1111/j.1744-7348.1988.tb03323.x
  41. Sebesta, J., Kummer, M., Roderick, H. W., Hoppe, H. D., Cervenka, J., Swierczewski, A. and Mueller, K. 1991. Breeding oats for resistance to rusts and powdery mildew in Central Europe. Ochr. Rostl. 27:229-238.
  42. Sterna, V., Zute, S. and Brunava, L. 2016. Oat grain composition and its nutrition benefice. Agric. Agic. Sci. Proc. 8:252-256.
  43. Tang, X., Cao, X., Xu, X., Jiang, Y., Luo, Y., Ma, Z., Fan, J. and Zhou, Y. 2017. Effects of climate change on epidemics of powdery mildew in winter wheat in China. Plant Dis. 101:1753-1760. https://doi.org/10.1094/PDIS-02-17-0168-RE
  44. Traskovetskaya, V., Gorash, A., Liatukas, Z., Saulyak, N., Ternovyi, K., Babayants, O., Ruzgas, V. and Leistrumaite, A. 2019. Virulence and diversity of the Blumeria graminis f. sp. tritici populations in Lithuania and Southern Ukraine. Zemdirbyste 106:107-116. https://doi.org/10.13080/z-a.2019.106.014
  45. Troch, V., Audenaert, K., Bekaert, B., Hofte, M. and Haesaert, G. 2012. Phylogeography and virulence structure of the powdery mildew population on its 'new' host triticale. BMC Evol. Biol. 12:76. https://doi.org/10.1186/1471-2148-12-76
  46. Wolfe, M. S. and Schwarzbach, E. 1978. Patterns of race changes in powdery mildews. Annu. Rev. Phytopathol. 16:159-180. https://doi.org/10.1146/annurev.py.16.090178.001111
  47. Yanez-Lopez, R., Torres-Pacheco, I., Guevara-Gonzalez, R. G., Hernandez-Zul, M. I., Quijano-Carranza, J. A. and Rico-Garcia, E. 2012. The effect of climate change on plant diseases. Afr. J. Biotechnol. 11:2417-2428.