DOI QR코드

DOI QR Code

Complete Genomic Characterization of Two Beet Soil-Borne Virus Isolates from Turkey: Implications of Comparative Analysis of Genome Sequences

  • Moradi, Zohreh (Department of Plant Pathology, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University) ;
  • Maghdoori, Hossein (Department of Plant Pathology, Faculty of Agriculture, Ferdowsi University of Mashhad) ;
  • Nazifi, Ehsan (Department of Biology, Faculty of Basic Sciences, University of Mazandaran) ;
  • Mehrvar, Mohsen (Department of Plant Pathology, Faculty of Agriculture, Ferdowsi University of Mashhad)
  • Received : 2020.12.11
  • Accepted : 2021.02.02
  • Published : 2021.04.01

Abstract

Sugar beet (Beta vulgaris L.) is known as a key product for agriculture in several countries across the world. Beet soil-borne virus (BSBV) triggers substantial economic damages to sugar beet by reducing the quantity of the yield and quality of the beet sugars. We conducted the present study to report the complete genome sequences of two BSBV isolates in Turkey for the first time. The genome organization was identical to those previously established BSBV isolates. The tripartite genome of BSBV-TR1 and -TR3 comprised a 5,835-nucleotide (nt) RNA1, a 3,454-nt RNA2, and a 3,005-nt RNA3 segment. According to sequence identity analyses, Turkish isolates were most closely related to the BSBV isolate reported from Iran (97.83-98.77% nt identity). The BSBV isolates worldwide (n = 9) were phylogenetically classified into five (RNA-coat protein read through gene [CPRT], TGB1, and TGB2 segments), four (RNA-rep), or three (TGB3) lineages. In genetic analysis, the TGB3 revealed more genetic variability (Pi = 0.034) compared with other regions. Population selection analysis revealed that most of the codons were generally under negative selection or neutral evolution in the BSBV isolates studied. However, positive selection was detected at codon 135 in the TGB1, which could be an adaptation in order to facilitate the movement and overcome the host plant resistance genes. We expect that the information on genome properties and genetic variability of BSBV, particularly in TGB3, TGB1, and CPRT genes, assist in developing effective control measures in order to prevent severe losses and make amendments in management strategies.

Keywords

References

  1. Adams, M. J., Antoniw, J. F. and Kreuze, J. 2009. Virgaviridae: a new family of rod-shaped plant viruses. Arch. Virol. 154:1967-1972. https://doi.org/10.1007/s00705-009-0506-6
  2. Borodynko, N., Hasiow, B. and Pospieszny, H. 2006. First report of beet soilborne virus in Poland. Plant Dis. 90:112. https://doi.org/10.1094/PD-90-0112B
  3. Borodynko, N., Hasiow-Jaroszewska, B., Rymelska, N. and Pospieszny, H. 2009. Full length genome sequence of Polish isolate of beet soil-borne virus confirms low level of genetic diversity. Acta Biochim. Pol. 56:729-731.
  4. Camelo-Garcia, V. M., Rezende, J. A. M. and Nagata, T. 2019. First report of beet soil-borne virus on red table beet in Brazil. Plant Dis. 103:2146. https://doi.org/10.1094/PDIS-03-19-0488-PDN
  5. Crutzen, F., Mehrvar, M., Gilmer, D. and Bragard, C. 2009. A full-length infectious clone of beet soil-borne virus indicates the dispensability of the RNA-2 for virus survival in planta and symptom expression on Chenopodium quinoa leaves. J. Gen. Virol. 90:3051-3056. https://doi.org/10.1099/vir.0.014548-0
  6. Dreher, T. W. 2009. Role of tRNA-like structures in controlling plant virus replication. Virus Res. 139:217-229. https://doi.org/10.1016/j.virusres.2008.06.010
  7. Farzadfar, S., Pourrahim, R., Golnaraghi, A. R. and Ahoonmanesh, A. 2007. Surveys of beet necrotic yellow vein virus, beet soil borne virus, beet virus Q and Polymyxa betae in sugar beet fields in Iran. J. Plant Pathol. 89:277-281.
  8. Food and Agriculture Organization of the United Nations. 2018. FAOSTAT. URL http://www.fao.org/faostat/en/#home [19 February 2021].
  9. Hellendoorn, K., Verlaan, P. W. G. and Pleij, C. W. A. 1997. A functional role for the conserved protonatable hairpins in the 5' untranslated region of turnip yellow mosaic virus RNA. J. Virol. 71:8774-8779. https://doi.org/10.1128/jvi.71.11.8774-8779.1997
  10. Henry, C. M., Jones, R. A. C. and Coutts, R. H. A. 1986. Occurrence of a soil-borne virus of sugar beet in England. Plant Pathol. 35:585-591. https://doi.org/10.1111/j.1365-3059.1986.tb02059.x
  11. Keskin, B. 1964. Polymyxa betae n.sp., a parasite in the roots of Beta Vulgaris Tournefort, particularly during the early growth of the sugar beet. Arch. Mikrobiol. 49:348-374 (in German). https://doi.org/10.1007/BF00406857
  12. Koenig, R., Beier, C., Commandeur, U., Luth, U., Kaufmann, A. and Luddecke, P. 1996. Beet soil-borne virus RNA 3: a further example of the heterogeneity of the gene content of furovirus genomes and of triple gene block-carrying RNAs. Virology 216:202-207. https://doi.org/10.1006/viro.1996.0047
  13. Koenig, R., Commandeur, U., Loss, S., Beier, C., Kaufmann, A. and Lesemann, D. E. 1997. Beet soil-borne virus RNA 2: similarities and dissimilarities to the coat protein gene-carrying RNAs of other furoviruses. J. Gen. Virol. 78:469-477. https://doi.org/10.1099/0022-1317-78-2-469
  14. Koenig, R. and Loss, S. 1997. Beet soil-borne virus RNA 1: genetic analysis enabled by a starting sequence generated with primers to highly conserved helicase-encoding domains. J. Gen. Virol. 78:3161-3165. https://doi.org/10.1099/0022-1317-78-12-3161
  15. Koenig, R., Pleij, C. W., Beier, C. and Commandeur, U. 1998. Genome properties of beet virus Q, a new furo-like virus from sugarbeet, determined from unpurified virus. J. Gen. Virol. 79:2027-2036. https://doi.org/10.1099/0022-1317-79-8-2027
  16. Koenig, R., Pleij, C. W. and Buttner, G. 2000. Structure and variability of the 3' end of RNA 3 of beet soil-borne pomovirus: a virus with uncertain pathogenic effects. Arch. Virol. 145:1173-1181. https://doi.org/10.1007/s007050070117
  17. Koonin, E. V. and Dolja, V. V. 1993. Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit. Rev. Biochem. Mol. Biol. 28:375-430. https://doi.org/10.3109/10409239309078440
  18. Kosakovsky Pond, S. L. and Frost, S. D. 2005. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 22:1208-1222. https://doi.org/10.1093/molbev/msi105
  19. Kutluk Yilmaz, N. D. and Sokmen, M. A. 2010. Occurrence of soilborne sugar beet viruses transmitted by Polymyxa betae northern and central Turkey. J. Plant Pathol. 92:507-510.
  20. Kutluk Yilmaz, N. D., Sokmen, M. A., Kaya, R., Sevik, M. A., Tunali, B. and Demirtas, S. 2016. The widespread occurrences of beet soil borne virus and RNA-5 containing beet necrotic yellow vein virus isolates in sugar beet production areas in Turkey. Eur. J. Plant Pathol. 144:443-455. https://doi.org/10.1007/s10658-015-0780-y
  21. Kutluk Yilmaz, N. D., Yanar, Y., Gunal, H. and Erkan, S. 2004. Effects of soil properties on disease occurrence of beet necrotic yellow vein virus and beet soilborne virus on sugar beet in Tokat, Turkey. Plant Pathol. J. 3:56-60. https://doi.org/10.3923/ppj.2004.56.60
  22. Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35:1547-1549. https://doi.org/10.1093/molbev/msy096
  23. Leathers, V., Tanguay, R., Kobayashi, M. and Gallie, D. R. 1993. A phylogenetically conserved sequence within viral 3' untranslated RNA pseudoknots regulates translation. Mol. Cell. Biol. 13:5331-5347. https://doi.org/10.1128/MCB.13.9.5331
  24. Lesemann, D.-E., Koenig, R., Lindsten, K. and Henry, C. 1989. Serotypes of beet soil-borne furovirus from FRG and Sweden. OEPP/EPPO Bull. 19:539-540. https://doi.org/10.1111/j.1365-2338.1989.tb00429.x
  25. Lindsten, K. 1989. Investigations concerning soil-borne viruses in sugarbeet in Sweden. OEPP/EPPO Bull. 19:531-537. https://doi.org/10.1111/j.1365-2338.1989.tb00428.x
  26. Lopez, C., Aramburu, J., Galipienso, L., Soler, S., Nuez, F. and Rubio, L. 2011. Evolutionary analysis of tomato Sw-5 resistance-breaking isolates of tomato spotted wilt virus. J. Gen. Virol. 92:210-215. https://doi.org/10.1099/vir.0.026708-0
  27. Martin, D. P., Murrell, B., Golden, M., Khoosal, A. and Muhire, B. 2015. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 1:vev003.
  28. McGrann, G. R. D., Grimmer, M. K., Mutasa-Gottgens, E. S. and Stevens, M. 2009. Progress towards the understanding and control of sugar beet rhizomania disease. Mol. Plant Pathol. 10:129-141. https://doi.org/10.1111/j.1364-3703.2008.00514.x
  29. Mehrvar, M. 2009. Diversity of soil-borne sugar beet viruses in Iran: a comprehensive study of beet necrotic yellow vein virus, beet black scorch virus and other pomoviruses in Iran. Ph.D. thesis. Universite catholique de Louvain, Louvain, Belgium.
  30. Meunier, A., Schmit, J.-F., Stas, A., Kutluk, N. and Bragard, C. 2003. Multiplex reverse transcription-PCR for simultaneous detection of beet necrotic yellow vein virus, beet soilborne virus, and beet virus Q and their vector Polymyxa betae KESKIN on sugar beet. Appl. Environ. Microbiol. 69:2356-2360. https://doi.org/10.1128/AEM.69.4.2356-2360.2003
  31. Meunier, A., Schmit, J. F., Stas, A., Marlier, A., Wauters, A., Steyer, S. and Bragard, C. 2000. The status of rhizomania in Belgium. Parasitica 56:85-97.
  32. Moradi, Z., Mehrvar, M., Nazifi, E. and Zakiaghl, M. 2016. The complete genome sequences of two naturally occurring recombinant isolates of sugarcane mosaic virus from Iran. Virus Genes 52:270-280. https://doi.org/10.1007/s11262-016-1302-5
  33. Mouhanna, A. M., Nasrallah, A., Langen, G. and Schlosser, E. 2002. Surveys for beet necrotic yellow vein virus (the cause of Rhizomania), other viruses, and soil-borne fungi infecting sugar beet in Syria. J. Phytopathol. 150:657-662. https://doi.org/10.1046/j.1439-0434.2002.00813.x
  34. Prillwitz, H. and Schlosser, E. 1992. Beet soil-borne virus: occurrence, symptoms and effect on plant development. Meded. Fac. Landbouwwet. Rijksuniv. Gent 57:295-302.
  35. Ratti, C., Clover, G. R. G., Autonell, C. R., Harju, V. A. and Henry, C. M. 2005. A multiplex RT-PCR assay capable of distinguishing beet necrotic yellow vein virus types A and B. J. Virol. Methods 124:41-47. https://doi.org/10.1016/j.jviromet.2004.10.008
  36. Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E. and Sánchez-Gracia, A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34:3299-3302. https://doi.org/10.1093/molbev/msx248
  37. Rush, C. M., Liu, H.-Y., Lewellen, R. T. and Acosta-Leal, R. 2006. The continuing saga of rhizomania of sugar beets in the United States. Plant Dis. 90:4-15. https://doi.org/10.1094/PD-90-0004
  38. Simon, A. E. and Miller, W. A. 2013. 3' cap-independent translation enhancers of plant viruses. Annu. Rev. Microbiol. 67:21-42. https://doi.org/10.1146/annurev-micro-092412-155609
  39. Skuzeski, J. M., Nichols, L. M., Gesteland, R. F. and Atkins, J. F. 1991. The signal for a leaky UAG stop codon in several plant viruses includes the two downstream codons. J. Mol. Biol. 218:365-373. https://doi.org/10.1016/0022-2836(91)90718-l
  40. Sperschneider, J. and Datta, A. 2010. DotKnot: pseudoknot prediction using the probability dot plot under a refined energy model. Nucleic Acids Res. 38:e103. https://doi.org/10.1093/nar/gkq021
  41. Tamada, T. and Kondo, H. 2013. Biological and genetic diversity of plasmodiophorid-transmitted viruses and their vectors. J. Gen. Plant Pathol. 79:307-320. https://doi.org/10.1007/s10327-013-0457-3
  42. Torrance, L. 2008. Pomovirus. In: Encyclopedia of virology, 3rd ed., eds. by B. W. J. Mahy and M. H. V. Van Regenmortel, pp. 282-287. Academic Press, London, UK.
  43. Torrance, L., Wright, K. M., Crutzen, F., Cowan, G. H., Lukhovitskaya, N. I., Bragard, C. and Savenkov, E. I. 2011. Unusual features of pomoviral RNA movement. Front Microbiol. 2:259. https://doi.org/10.3389/fmicb.2011.00259
  44. Verhoyen, M., Van Den Bossche, M. and Van Steyvoort, L. 1987. New sugarbeet virus identification in Belgium. Rev. Agric. 40:1463-1468 (in French).
  45. Wang, B., Li, M., Han, C., Li, D. and Yu, J. 2008. Complete genome sequences of two Chinese beet soil-borne virus isolates provide evidence that the genome is highly conserved. J. Phytopathol. 156:487-488. https://doi.org/10.1111/j.1439-0434.2007.01373.x
  46. Weiland, J. J., Van Winkle, D., Edwards, M. C., Larson, R. L., Shelver, W. L., Freeman, T. P. and Liu, H.-Y. 2007. Characterization of a U.S. isolate of beet black scorch virus. Phytopathology 97:1245-1254. https://doi.org/10.1094/PHYTO-97-10-1245